Deciding to Remember:
Memory Maintenance as a Markov Decision Process

Jordan W. Suchow (suchow@berkeley.edu)
Thomas L. Griffiths (tom.griffiths@berkeley.edu)
Department of Psychology, University of California, Berkeley, Berkeley, USA

Abstract

Working memory is a limited-capacity form of human memory that actively holds information in mind. Which memories ought to be maintained? We approach this question by showing an equivalence between active maintenance in working memory and a Markov decision process in which, at each moment, a cognitive control mechanism selects a memory as the target of maintenance. The challenge of remembering is then finding a maintenance policy well-suited to the task at hand. We compute the optimal policy under various conditions and define plausible cognitive mechanisms that can approximate these optimal policies. Framing the problem of maintenance in this way makes it possible to capture in a single model many of the essential behavioral phenomena of memory maintenance, including directed forgetting and self-directed remembering. Finally, we consider the case of imperfect metamemory — where the current state of memory is only partially observable — and show that the fidelity of metamemory determines the effectiveness of maintenance.

Keywords: memory maintenance, Markov Decision Process, cognitive control, working memory

Introduction

Working memory is a storage system that actively holds information in mind and allows for its manipulation, providing a workspace for thought (Baddeley, 1992). Its capacity is strikingly limited, perhaps to only a few sights or sounds. Using working memory is effortful: pupils dilate, skin conductance rises, and secondary tasks become harder to perform well (Kahneman, 1973). Much of the research on working memory has focused on characterizing its limits and determining what gives rise to them. For example, working memory capacity is known to be lower in young children and the elderly (Dobbs & Rule, 1989), correlates strongly with a person’s fluid intelligence (Conway et al., 2003), is affected by sleep schedule (Steenari et al., 2003), and can be impaired in people with mental disorders such as schizophrenia (Goldman-Rakic, 1994). From this work, we have learned a considerable amount about how much can be remembered and who is best at remembering it.

Information held in working memory is malleable (Jonides et al., 2008). It can, for example, be remembered and forgotten intentionally through the processes of directed forgetting and directed remembering, which prioritize some experiences over others for later access (Muter, 1965; Bjork et al., 1968). These directed maintenance mechanisms are closely related to cognitive control and to the top-down processes that determine our conscious thoughts from moment to moment (Macrae et al., 1997). At times, these control processes can backfire, causing unwanted thoughts and memories to linger despite our best intentions (Wegner, 2009).

Given the flexibility available to the working memory system, a question naturally arises: What is the optimal way to maintain memories? What is the space of possible maintenance strategies, and how successful is each of them in retaining information over short durations?

We approach this question by likening working memory maintenance to a sequential decision process in which, at each moment, a cognitive control mechanism decides which memories to prioritize. We focus on a particular kind of sequential decision process known as the Markov decision process (MDP) (Puterman, 1994), which provides an abstract mathematical framework for describing decision-making in a setting that is partly under control of the decision-maker (here, the maintenance process) and partly under control of the environment (here, the degradation process). Besides being well suited to describing the problem of memory maintenance, the MDP has the added benefit of being one of the most well-understood models in the mathematics and psychology of reinforcement learning. Thus, having established the connection, existing concepts and tools from reinforcement learning can be brought to bear on the dynamics of memory maintenance.

The plan of the paper is as follows. First we describe the essential behavioral phenomena of memory maintenance and control. Then we formulate the problem of memory maintenance as an MDP. The next section describes the form of solutions to the maintenance problem — a maintenance policy — and proceeds by computing the optimal policy under various reward functions. Next, we show how the optimal policy, and cognitively plausible approximations thereof, can reproduce the behavioral phenomena described earlier. Before concluding, we extend our framework to the case of imperfect metamemory, describing memory maintenance in a partially observable mind — i.e., in situations where the maintenance system has incomplete or uncertain information about the current status of actively-held memories.

Memory maintenance and control

The essential behavioral phenomena of active memory maintenance and control involve monitoring, prioritizing, and controlling memories.

Directed remembering

Memories can be forgotten intentionally. In experiments on this process of “directed forgetting”, participants study some information and are then directed to remember or forget specific elements of what was studied (Muter, 1965).
The Markov Decision Process

A Markov decision process is defined by a state space, a set of possible actions, a transition model, and a reward function. Each is defined in turn below:

State space We suppose that there is a memory-supporting commodity, akin to attention, that can be divided into *quanta*, each of which is assigned to a particular memory. The quanta might, for example, represent cycles of a time-based refreshing process (Vergauwe et al., 2009) or neural populations in prefrontal cortex that represent “token” encodings of visual events (Bowman & Wyble, 2007). The more of the commodity assigned to a memory, the stronger and more robust it is. The state of working memory is then an allotment of the quanta to each memory, which may receive the entire commodity, only a portion of it, or perhaps none at all. The state space thus forms a $(K-1)$ regular discrete simplex, where K is the number of memories held in working memory and where the discretization is determined by the number of quanta N.

Actions At each time step, the maintenance process selects a quantum as the recipient of maintenance. Thus the set of possible actions A is of size N, one action per quantum, and does not depend on the state.

Transition model The transition model specifies the probability of moving from one state of memory to another and is thus a formal model of memory degradation. We will make use of the transition model proposed in Suchow (2014) — i.e., a Moran process, a model of evolution in finite populations that originated in population genetics (Moran, 1958) and which has been used to describe dynamic processes in diverse settings. Under the Moran process, at each time step a quantum degrades because another quantum interferes with it or replaces it. The degraded quantum is chosen randomly, uniformly across all the quanta. The interfering (or replacing) quantum is determined by the action chosen by the maintenance process. We can write the state as an allotment of quanta to memories, $s = [n_1, n_2, \ldots, n_K]$, summing to N, the number of quanta. At each time step, one of the n’s is incremented and one is decremented. The incremented n is determined by the chosen action — if the chosen action maintains and one is decremented. The incremented n is chosen with probability proportional to n because the quanta are all equally likely to degrade. This defines a transition model $P(s' | s,a)$, which gives the probability of landing in state s' given that the agent took action a while in state s.

Reward function By definition, the agent’s goal is to maximize the total reward that is received. The reward function is a mapping from states to an amount of reward that is received for landing in that state. In the case of most working memory tasks, which are episodic (in the sense that information arrives all at once and is then discarded at the end of the trial), and which have a retention interval that is known
to the participant, the reward function is time-varying, taking on a value of zero everywhere until the moment of the test, at which point it becomes positive for some states and (possibly) zero for others. For simplicity, we assume that the retention interval is chosen in such a way (e.g., from an exponential distribution) that the reward function is stationary. The specifics of the reward function inevitably depend on the demands of the task and are usually implicit in the experiment's design and feedback mechanism. For example, tasks using the “continuous partial report paradigm” require participants to hold information in mind for a fixed duration, e.g., 2000 ms, with reward provided in proportion to the similarity between the participant’s response and the true value. Other tasks provide all-or-none feedback.

We will consider three reward functions relevant to the goals of a memory maintenance system. The first applies to tasks with an all-or-none design in which the memorizer receives full credit for having remembered enough about the cued memory to access it (i.e., having at least \(k \) quanta assigned to it at the time of the test, where \(k \) is the strength of the weakest accessible memory) and otherwise receives no reward. This reward function is appropriate when scoring performance using a high-threshold model, considering only the probability of remembering while ignoring accuracy. In the second, the memorizer is rewarded for having at least one sufficiently strong memory (i.e., one with greater than some threshold number of quanta), but where remembering something about everything is unnecessary. In the third, there is an imbalance across memories in the reward given for remembering them: some are more valuable than others.

Maintenance policies

The Markov decision process is a general framework for describing the problem of sequential decision making, but it does not specify the particular strategy used by the agent to make a decision. That strategy is defined by a policy, a function that specifies an action (or probability distribution over actions) for each possible state. Much of modern research on MDPs focuses on finding the optimal policy, one that maximizes the (possibly time-discounted) reward. The simplest maintenance policies do not depend on the current state of memory. Rather, they produce the same behavior in every state. Borrowing terminology from game theory, we call these maintenance policies unconditional. An example of an unconditional maintenance policy is all-1, which always selects the \(i \)th quantum as the target of maintenance. A second unconditional strategy is random, which selects a target at random, uniformly over all quanta — this maintenance policy is equivalent to a neutral Moran process.

Conditional policies, in contrast, depend on the state. In the context of memory maintenance, consider for example the strategy all-\(j \), which selects a quantum uniformly from among those assigned to memory \(j \) if one exists, otherwise choosing randomly among all the quanta.

The optimal policy is conditional. Using dynamic programming, we computed the optimal policy for a time-discounted variant of the above MDP under each of the reward functions described above, setting \(N = 10, K = 3 \), and the discount factor to 0.99. The optimal policy is different under each reward function, reflecting the differing demands of the task. When the reward function encourages having at least one highly-stable memory, the optimal policy tends to maintain memories that are already stable, preferring to select a quantum assigned to a memory with an above-median allocation of quanta 64% of the time. In contrast, when the reward function encourages good performance on the task, which requires storing more than just one memory, the optimal policy tends to maintain memories that are least stable, preferring to select a quantum assigned to a memory with an above-median allocation of quanta only 29% of the time. When the reward function encourages prioritization of a particular memory, the optimal policy deterministically maintains that memory so long as it has not fully degraded, in which case it chooses randomly among the others — this is the all-\(j \) maintenance policy described above. At a minimum, then, any cognitive implementation of memory maintenance must be able to selectively maintain memories according to their strength and according to their identity.

The optimal policy can be approximated by a simple strategy that rests on plausible cognitive mechanisms, inspired by a psychological principle known as Luce’s choice axiom (Luce, 1959; Herrnstein, 1961). According to the axiom, when faced with a choice among alternatives, a decision-maker will exhibit ‘matching behavior’, selecting options with probability proportional to their value. Matching behavior was originally studied in the context of learning theory, where value is defined as the expected reward (Estes, 1957; Sutton & Barto, 1998). Thus if two levers offer rewards in a ratio of 2:1, an individual that displays matching behavior will press the more rewarding lever twice as often. Here, value is akin to memory strength and is defined by the number of quanta dedicated to a memory.

In practice, it is common to consider a generalization of matching behavior in which a real-valued parameter \(L \) determines the decision-maker’s sensitivity to the signal. In this so-called “softmax” generalization of matching behavior, the probability of selecting option \(a \) from the set of alternatives \(A \) is given by

\[
P(a) = \frac{v(a)^L}{\sum_{b \in A} v(b)^L},
\]

where \(v(x) \) is the strength of the signal generated by \(x \) and where \(L \) determines the decision maker’s sensitivity to the signal (Sutton & Barto, 1998).

Five values of \(L \) are particularly significant. When \(L = 0 \), the process is unconditional (i.e., insensitive to the signal). This corresponds to a neutral process. When \(L = 1 \), the process gives preference to objects in proportion to how strongly they are currently represented. When \(L \to \infty \), the winner takes all. In contrast, when \(L = -1 \), the process gives preference to objects in proportion to how weakly they are currently repre-
sented, and in the limit \(L \to -\infty \), the loser takes all.

Equation 1 defines the Luce family of maintenance policies that will be examined empirically in the following sections.

Reproducing the behavioral phenomena

The benefit of directed remembering

We simulated performance of a memorizer who uses the Luce family of maintenance policies in the directed-remembering task from Exp. 1 of Williams et al. (2012). Unlike the random policy, which is unable to direct maintenance to the cued object, policies in the Luce family can (Fig. 1).

![Figure 1: Reproducing Experiment 1 from Williams et al. (2012), with the Luce policy. In condition 1, participants remember 1 object. In condition 2, they remember 2. In condition 2', they initially remember 2 and then direct maintenance to the one that is cued.](image)

The cost of directed remembering

Next, we simulated performance of a memorizer who uses the Luce family of maintenance policies in the directed-remembering task from Exp. 2 of Williams et al. (2012). The random policy remains unable to direct maintenance to the cued object — thus, in comparison to human performance, the cued object is remembered too poorly, and the non-cued object is remembered too well. In contrast, policies in the Luce family demonstrate both effects (Fig. 2), directed maintenance to the cued object and drawing it away from the non-cued object.

![Figure 2: Reproducing Williams et al. (2012), Exp. 2, with the Luce policy. Objects that do not receive the benefit of preferential maintenance are rapidly lost.](image)

Self-directed remembering

Lastly, we simulated performance of a memorizer who uses the Luce family of maintenance policies in the self-directed remembering task of Suchow et al. (2014). The random policy cannot direct maintenance. In contrast, policies in the Luce family can redirect maintenance to best- or worst-remembered object through an appropriate choice of \(L \) (Fig. 3).

![Figure 3: Reproducing self-directed remembering from Suchow et al. (2014), with the Luce policy. Maintenance can be redirected based on a metamemory signal.](image)

Predicting new phenomena

Graded directed remembering

Given the apparent flexibility of directed remembering, it may be possible to give graded preference to some objects over others. There is strong evidence that such graded preferences are possible during encoding. The Luce family of policies can be extended to give graded preference to certain memories over others. To do this, we first define a priority function \(f \) that assigns a score to each memory. For example, memories A, B, and C may receive scores of 4, 3, and 1, meaning that A has 4× the priority of C and B has 3× the priority of C. Quanta are selected with probability proportional to the priority score of the memory to which it is assigned. For a system with \(N \) quanta, of which \(n_A \) are assigned to memory A, \(n_B \) to B, and \(n_C \) to C, the probability of selecting a quantum \(q \) that is of type \(j \) is given by

\[
P(q) = \frac{f(j)}{\sum_{j \in \{A,B,C\}} f(j)n_j}.
\]

This is equivalent to adding selective pressures to the neutral process and allows for prioritization and graded directed-remembering.

Partially observable minds

The framework of a Markov decision process makes a strong commitment to the accessibility of the memory state to the memory maintenance system: it assumes perfect, real-time, no-cost metamemory. However, metamemory is imperfect (Flavell & Wellman, 1977).

By generalizing the MDP to a partially-observable world, we can accommodate situations of imperfect or costly
metamemory. A partially observable world is one in which the agent does not know exactly what state it is in, making it impossible to directly carry out conditional policies that depend on the state. Often the agent has available some instrument (a “sensor”) for measuring or sensing the state. In the case of memory maintenance, the sensor is metamemory. The agent uses the sensor to update its beliefs about the state. Thus the partially observable Markov decision process (POMDP) extends the MDP through the introduction of a sensor model, which describes the information about the state that is provided by each observation, and a belief state, which is a probability distribution over the state space that embodies the agent’s beliefs about the current state (Monahan [1982]). The Dirichlet distribution is a convenient representation of uncertainty about the state of memory resource allocation because it is the conjugate prior for multinomial data.

In a partially observable mind, inefficiencies of metamemory limit the efficacy of flexible maintenance behaviors. This is because in a world where the future depends on the past, one who does not even know the present cannot suitably plan for what is to come. We demonstrate this dependence by defining a simple metamemory agent and then simulating its behavior with different levels of efficiency. Metamemory observations made by the agent come in the form of object labels sampled with probability proportional to their strength (that is, the number of quanta assigned to them). This defines the sensor model. The agent is initially unaware of the allocation of the commodity, represented by a belief state initially set to a Dirichlet distribution with concentration parameters 1, 1, and 1, which is equivalent to a uniform distribution over all possible allocations. At each time step, the agent makes \(m \) observations. We assume that the metamemory system has no memory of its own and thus considers only the observations made at the current time step (see below for a brief discussion of optimal filtering, in which the metamemory system also considers past observations). To avoid the problems caused by sampling zero quanta of a certain type, we use additive smoothing by adding one to all the counts. These counts are used by the Luce policy, with exponent 1. The efficiency of metamemory can be varied by altering the number of observations made at each time step. This formulation makes it possible to vary efficiency between two extremes. At one extreme, \(m = 0 \) and the agent gains no information about the state. At the other extreme, in the limit \(m \to \infty \), the agent has perfect information about the state. Intermediate efficiencies lead to intermediate performance (Fig. 4).

Discussion

In this paper, we approached the problem of memory maintenance by demonstrating an equivalence to a Markov decision process in which, at each moment, a cognitive control mechanism selects a memory as the target of maintenance. The challenge of remembering is then finding a maintenance policy well-suited to the task at hand. We computed the optimal policy under various conditions and defined plausible cognitive mechanisms, embodied by the Luce policy, that can approximate these optimal policies. Framing the problem of maintenance in this way makes it possible to capture in a single model many of the essential behavioral phenomena of memory maintenance, including directed remembering, priority-based directed remembering, and self-directed remembering. Finally, we considered the case of imperfect metamemory — where the current state of memory is only partially observable — and show that the fidelity of metamemory determines the effectiveness of maintenance.

Perhaps the biggest payoff that comes from framing the problem of memory maintenance in this way is the set of new questions that it makes possible to ask.

For example, one might ask where maintenance policies come from. Specifically, how are they learned? Methods such as temporal difference learning have emerged as candidate learning mechanisms used in the brain to learn policies that guide behavior, and it has become popular to relate this particular class of learning algorithms to known reward circuitry in the brain (O’Doherty et al., 2003). Particularly relevant is Todd et al. (2008), which discusses learning to use working memory by temporal difference methods. Specifically, temporal difference learning can be used to shape representations in the prefrontal cortex so that they are useful for working memory (Todd et al., 2008). Also relevant is O’Reilly & Frank (2006), which develops an “actor/critic” model of the neural substrates of working memory and cognitive control, showing that an active gating mechanism that controls the contents of working memory can be learned through learning mechanisms from reinforcement learning (O’Reilly & Frank, 2006).

Finally, it may be useful to consider other resource allocation tasks that are similar in structure to that of memory maintenance — e.g., scheduling and queuing. Much of the original work on these problems came from the field of operations research, which originated from military planners in WWII and which today considers the optimal solutions to decision
making and resource allocation tasks in a variety of settings, often in the context of organizational behavior (Taha, 2007) or electronic systems (Åström & Wittenmark, 2011). Having made the link to these related problems, it may be fruitful to consider known solutions as candidate psychological mechanisms. For example, queuing theory is a set of tools for considering resource allocation tasks that feature the continuous arrival of entities that require the resource (e.g., callers to a company’s customer support center) (Kleinrock, 1975). Most of the popular working memory tasks are episodic, with information arriving all at once and then being discarded at the end of the trial. Our visual experience is not always so episodic; rather, it is sometimes necessary to update the contents of working memory with new information or redirecting maintenance when the goals change (Matthey et al., 2012). Looking towards queuing theory, for example, may provide insight into this problem of maintenance in the face of continuously-arriving information.

Acknowledgments

This work was partially supported by the National Science Foundation (grant SPRF-IBSS-1408652 to T.L.G and J.W.S).

References

