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Abstract

Different linguistic modalities (speech or sign) offer differ-
ent levels at which signals can iconically represent the world.
One hypothesis argues that this iconicity has an effect on how
linguistic structure emerges. However, exactly how and why
these effects might come about is in need of empirical in-
vestigation. In this contribution, we present a signal creation
experiment in which both the signalling space and the mean-
ing space are manipulated so that different levels and types of
iconicity are available between the signals and meanings. Sig-
nals are produced using an infrared sensor that detects the hand
position of participants to generate auditory feedback. We find
evidence that iconicity may be maladaptive for the discrim-
ination of created signals. Further, we implemented Hidden
Markov Models to characterise the structure within signals,
which was also used to inform a metric for iconicity.

Keywords: Linguistic structure; Combinatorial structure; Sig-
nal spaces; Iconicity; Hidden Markov Models

Introduction

One of the central interests to the field of language evolu-
tion is what initially motivated the emergence of structure
in language, and how that structure manifests itself. Experi-
mental work in laboratory settings using artificial languages
is a dominant exploratory tool within the field, primarily fo-
cussing on signals built from pre-discretised blocks and the
emergence of compositional structure, where meaningful el-
ements combine to make bigger meaningful elements (e.g.
Kirby, Cornish, and Smith (2008)). However, the scope of
some experiments has started to shift to investigate the emer-
gence of combinatorial structure, where meaningless build-
ing blocks combine to make meaningful units, using contin-
uous signal spaces, for example Verhoef, Kirby, and De Boer
(2014), which argues that phonemes emerged as the result of
cognitive learning biases within cultural transmission.

In the current study, using a novel signalling space proxy,
we manipulate both the structure of the signalling space, and
the structure of the meaning space, to tease out how the dy-
namics between a signal space and a meaning space can mo-
tivate the emergence of structure and how that structure is
defined. We are interested in how much structural emergence
can be explained by physical mapping problems, in order to
isolate what aspects of emerging structure are the result of
more cognitive mechanisms.

Hypotheses

We are testing two related hypotheses: 1. The dimensionality
of a signal space, or modality, will affect the emergence of
signal structure, and 2. Ability to recourse to iconicity will
also inhibit emergence of signal structure.

This first hypothesis is grounded in more than one obser-
vation. First, with more signal dimensions at our disposal

within a modality, the more signal distinctions that can be
made. Hockett (1960) outlined that as soon as the amount of
semantic distinctions outnumbers the number of signal dis-
tinctions, then we need a level of phonological (or combina-
torial) structure. Second, the more similar the structure of a
signal space to that of a meaning space, the easier it is to map
meanings to signals directly, making iconic or compositional
systems, where there is a one to one mapping between sig-
nal and meaning space, more likely than combinatorial ones,
with meaningless building blocks. Dimensionality of a signal
space will affect how similar it is to the structure of a meaning
space. In natural languages, the sign modality has many more
signal dimensions available than the spoken modality, and hu-
mans can visually perceive simultaneously presented aspects
of a signal in a way that the auditory system can not (San-
dler et al., 2011), meaning that it is easier to map signed sig-
nals onto highly complex meaning spaces than spoken ones.
There are no known spoken languages without a level of com-
binatorial structure. However, recent evidence has shown that
emerging sign languages can exist without a level of combi-
natorial structure, such as Al Sayyid Bedouin Sign Language
(ABSL) (Sandler, Aronoff, Meir, & Padden, 2011). Consider-
ing the role of linguistic modalities with respect to their signal
dimensionality in the emergence of structure is worth investi-
gating.

The second hypothesis, that iconicity will inhibit emer-
gence of signal structure, is related to the first, as when a
signal space and a meaning space have matching dimension-
ality, then it is easier to iconically map one onto the other.
De Boer and Verhoef (2012) built a mathematical model
which explores how iconic signal-meaning mappings are op-
timal when signal and meaning spaces have matching dimen-
sionality, and when there is a mismatch, then more conven-
tionalised structural strategies are needed. However, it is im-
portant to keep in mind that the iconicity within this model
was relative, where there is a correlation between signals and
meanings in such a way that similar meanings will be repre-
sented by similar signals. Relative iconicity is usually not ob-
servable from individual signals without seeing the rest of the
system. Examples include sound symbolism, where “glim-
mer” isn’t intuitively iconic, until one considers the corre-
spondence between “gl” sounds (e.g. glitter, glam, glow)
and shiny things. Relative iconicity is distinct from abso-
lute iconicity, where a signal represents a referent directly,
e.g. representing the form of a referent directly in a gesture
(terminology from Monaghan, Shillcock, Christiansen, and
Kirby (2014)).

Drawing from the evidence from ABSL, Sandler et al.
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(2011) hypothesised that emerging languages using the man-
ual modality may have more holistic signals than a spo-
ken equivalent, before combinatorial structure becomes nec-
essary, because of the ability to use “iconically motivated
signs”. Further evidence on this matter comes from Roberts
and Galantucci (2014) who present an experiment using a sty-
lus on a surface that continually moved downwards in a con-
stant motion so that participants could only manipulate the
horizontal dimension (i.e. as in Galantucci (2005)). Impor-
tantly, Roberts and Galantucci (2014) manipulated the mean-
ing space, rather than the signal space, in order to affect the
iconicity of signals. Within the experiment, participants were
asked to communicate a variety of meanings which were ei-
ther squiggly lines, which could be represented through abso-
lute iconicity with the modality provided, or circles coloured
various shades of green, which could not be iconically rep-
resented. The experiment showed that the signals used for
circles were made up from repeated elements, while the lines
retained iconicity. However, this experiment only shows the
effect of iconicity on structure at two extreme ends of the
iconicity continuum, i.e. comparing absolute iconicity with
an example where no mapping is possible.

Our Experiment

Our experiment tests if relative iconicity, rather than abso-
lute iconicity, affects the emergence of structure within sig-
nals. Relative iconicity is much more prevalent in spoken
language, where absolute iconicity is much more possible in
the signed modality. In our experiment, we manipulate both
the signal space that participants use to generate signals, and
the meaning space which participants describe using their sig-
nals. In manipulating both, we affect the mapping between
the two in different ways. We manipulate the dimensionality
of both signal and meaning spaces, generating a dimension-
ality mismatch, which creates a mapping problem. Affecting
the dimensionality of our signal space is a very simple way to
model the differences between different linguistic modalities
with different levels of dimensionality. Obviously, modalities
for natural languages have a lot more dimensions than we use
in this study, but as with any model, in order to isolate individ-
ual effects, simplicity is key. We also manipulate the meaning
space, where meanings either differed continuously (making
an intuitive mapping onto the continuous signal space), or the
meanings were designed to be perceived as discrete.

Methods

Participants Participants were recruited at the VUB in
Brussels. 55 participants took part in the experiment, 27 male,
28 female. Participants had an average age of 24. Participants
were assigned to conditions randomly.

Signals Participants created signals using a “Leap Motion”
device, an infrared sensor designed to detect hand position
and motion. The sensor was used to detect a continuous sig-
nal space within which participants could gesticulate to pro-
duce audio signals. Depending on condition and phase within
the experiment, signals could be manipulated in their pitch,

volume, or both. In phases where the signal could be altered
in both pitch and volume, they were associated with the hor-
izontal and vertical dimensions respectively. In phases where
the signal could be altered in either pitch or volume, only one
spatial dimension was used. Participants were given auditory
feedback, but no visual feedback, other than seeing their hand
position. Participants were given clear instructions on how to
use the sensor, and time to get used to the mapping between
their hand position and the auditory feedback in each phase
of the experiment.

Conditions The conditions in our experiment differed in
the meaning space which participants were asked to create
signals for. The meaning space in both conditions consisted
of a set of squares that differed along dimensions which were
either continuous in one condition, or discrete in the other. In
phases where the meaning space only differed on one dimen-
sion, five squares only differed in either size (in the continu-
ous condition) or colour (in the discrete condition). In phases
where it differed on two dimensions, nine squares differed
either in both size and different shades of grey (in the contin-
uous condition), or in both colour and texture (in the discrete
condition) (see Fig. 1).

Procedure Participants were given instructions on how to
generate signals using the leap motion device. They used one
hand above the device to generate signals. There were three
phases of the experiment, each phase consisted of a practice
round and an experimental round, and each round consisted
of a signal creation task and a signal recognition task.

Discrete Continuous

Figure 1: The meaning spaces used in phases 1:2 and 2:2 in
the discrete condition and in the continuous condition.

Phases

In all phases participants saw the entire meaning space before
beginning. In the signal creation task, they were presented
with squares one by one and recorded signals using the leap
motion. Participants were explicitly told which signal dimen-
sion(s) they were manipulating.

Phase 1:1 In the first phase participants were asked to cre-
ate signals for a meaning space with 5 squares which only
differed in one dimension (size or colour depending on con-
dition). In this phase, participants could only manipulate the
signal with one signal dimension, which was counterbalanced
by randomly assigning participants to start with either pitch
or volume. Which signal dimension the participant started
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with was later controlled for in the analysis.

Phases 1:2 In phase 1:2, participants described a two-
dimensional meaning space with the squares differing in size
and shade in the continuous condition, or colour and texture
in the discrete condition (Fig. 1). They used the same one-
dimensional signal space used in phase 1:1 (see fig. 2).
Phases 2:2 In phase 2:2, participants were to describe the
same two-dimensional meaning space as in phase 1:2, but this
time with a two-dimensional signalling space where the sig-
nals differed in both pitch and volume (Fig. 2).
Counterbalancing Participants were randomly assigned to
do either phase 1:2 or 2:2 first. Whether phases had match-
ing dimensionality between signal and meaning spaces, or a
mismatch, was used as a variable in our analysis. However,
strategies will depend on what participants’ have dealt with
previously within the experiment. If they solve the dimen-
sionality mismatch problem before being provided with the
two-dimensional signal space, they may find it easier to con-
tinue with an already established strategy, than generate a new
one taking advantage of both dimensions.

Signal Dimensions Phases Meaning Dimensions

X 1:1
—_—

One meaning dimension

One signal dimension

Two signal dimensions Two meaning dimensions

Figure 2: The mapping between signal space dimensionality
and meaning space dimensionality in each phase using the
meanings from the discrete condition (the continuous condi-
tion had the same mappings).

Signal Recognition task After each signal creation task,
participants did a signal recognition task. They heard one
of their signals, and were asked to identify its referent from
an array of four randomly generated possibilities. They had
immediate feedback about the correct answer. Their perfor-
mance in this task was recorded for use in the analysis.
Post-experimental questionnaire After the experiment,
each participant completed a questionnaire. Questions asked
about what strategies were adopted in each phase of the ex-
periment. The questions asked explicitly whether participants
had strategies and what they were. Answers were free form.

Results

Post-experimental questionnaire When self-reporting
their strategies, most participants gave similar answers within
the continuous condition. Most choose to use pitch, volume
or duration directly to encode size or shade using relative
iconicity. For example, quiet to loud volumes used for light
to dark shades respectively, or longer duration for bigger

squares. However, there was still some strategies involving
different movement types, frequencies and speeds.

In the discrete condition, participants were more likely to
attempt other forms of iconicity. Some associated the differ-
ent colours with emotions or objects in the world like “a beat-
ing heart” or “the waves of the sea”, and then tried to make
signals which corresponded to these things. However, partic-
ipants were most likely to use patterns, speeds or frequencies
of repeated elements.

From self-reporting, participants who saw phase 1:2 first

were more likely to use the same signal dimension through-
out than to change the strategy to take advantage of both di-
mensions. This was a significant association (x*(1) = 4.2,
p < 0.05). Also, participants were significantly more likely
to perform better at the recognition tasks if they had strategies
(M=83% correct), than if they didn’t have strategies through-
out M=52% correct) (t(19) =-5, p < 0.001).
Signal Recognition Task Which condition participants
were in had an effect on how well participants performed in
the signal recognition task !. Participants were significantly
better at the recognition tasks if they were in the discrete con-
dition (M=82% correct), than if they were in the continuous
condition (M=66% correct) (t(52.7) = -3, p < 0.005).

The order in which participants received phases 1:2 and
2:2, and which signal dimension they started with (pitch or
volume), did not reliably predict participants recognition of
their signals. If a participant scored at chance level on the
signal recognition task (1), they were disqualified from the
rest of the analysis.

Measuring Structure

We started our analysis by generating standard deviations
(SDs) for the coordinates of each signal trajectory in order
to get some sense of how much movement there is within
each signal, or whether more static strategies are used (which
might be more indicative of relative iconicity). In the dis-
crete condition, there was a tendency for SDs of signal tra-
jectories to be bigger than in the continuous condition (23%
on average), using a linear mixed effects analysis and con-
trolling for participant and whether they started with pitch or
volume as random effects, we found however that this effect
was not significant (xz(l) =1.9, p =0.16). However, we did
find a significant effect of whether signals were produced in a
phase with matching dimensionality (phases 1:1 and 2:2), or
has mismatching dimensionality (phase 1:2), controlling for
the same random effects (x*(1) = 8.6, p < 0.005). Signal tra-
jectories produced using the mismatch had a mean increase of
13.4% in their SD than those using mismatch.

We then created a measure for how predictable signal tra-
jectories are. We quantised the signal coordinates using a
k-means algorithm, in order to create a list of integer values
representing a participant’s entire repertoire of signals. With
this, we estimated the marginal probability distribution of the

UIf a participant scored at chance level on the signal recognition
task (1), they were disqualified from the rest of the analysis.
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points on each quantised trajectory. We then used these to cal-
culate the conditional probabilities of individual points, and
finally, the joint probability of whole signal trajectories by
taking the negative logarithm of the product of first order con-
ditional probabilities of the points on the trajectory. We found
an effect of condition on how predictable signals were within
a repertoire, using a linear mixed effects analysis and con-
trolling for the same random effects as above (x>(1) = 11.3,
p < 0.001). The continuous condition showed more pre-
dictability than the discrete condition. Also, we found an
effect of matching dimensionality, controlling for the same
random effects (x>(1) = 5.8, p < 0.05), signals produced us-
ing the mismatch had 16% more predictability than signals
generated without a mismatch.

Hidden Markov Models

We used a Hidden Markov Model (HMM) with continu-
ous Gaussian emissions to model the signal repertoires of
participants. We treat HMM latent states as analogues for
phonemes, and the emissions as analogues for the surface
form. This allows us to use the number of latent states as
an index of reuse (or structure) present in the repertoires.

For each phase of a run, we trained an HMM with all the
signals used in that phase. Each signal is represented by an
array of amplitude and frequency value couples that make up
the signal. The number of latent states were determined by
training multiple HMM s in parallel and picking the one with
the lowest Bayesian Information Criterion (BIC) (see Algo-
rithm 1).

Algorithm 1 HMM training and selection

1: function FITHMM(trajectories)
2: hmm < nil

3 bic + 999999

4 nStates < 2

5: maxStates < 30

6: while nStates < maxStates do
7

8

9

for 1:100 do
hmm' <—HMM (nStates)
for trajectory in trajectories do

10: hmm' < BAUMWELCH(hmm’, trajectory)
11: if BIC(hmm') < bic then
12: hmm < hmm'
13: bic +BIC(hmm’)
14: nStates <— nStates + 1
return hmm

In order to validate that the model is relevant to partici-
pant success, we ran a mixed-effects regression on the par-
ticipant signal recognition scores while controlling for condi-
tion, phase and participant. We used the normalized number
of states (a real number in range [0,1], calculated by dividing
the number of states of each HMM with the highest number
of states in the group) as it was a slightly better predictor than
the absolute number of states.

We found higher the number of states in an HMM, higher
a participant’s score (R> = 0.604, = 0.086, p < 0.01). The

regression indicated significant random intercepts for partici-
pants and the interaction of condition (i.e. order of presenta-
tion) and phase, although adding random slopes did not im-
prove the model.

(Intercept)
2nd:2to2 —_—
3rd:2to2 —_————————
2nd:1to2 —_—
1st:1to1 ————
3rd:1to2 | —o——

-0.10 0.00 0.10

Figure 3: Random intercepts for each phase and condition
pair. Conditions are represented as the phase presentation or-
der).

The phase-by-phase analysis of the baseline number of
states (as indicated by the random intercepts estimated for
each phase) shows that the order in which the phases 1:2 and
2:2 are presented changes the expected number of states. If
phases 1:1 and 2:2 are presented with an intermittent 1:2,
there is a monotonous increase in the baseline number of
states for each consecutive phase. However, when 1:1 and
2:2 are followed by 1:2, 1:2 ends up as the phase with the
lowest baseline number of states in the experiment (Fig. 3).

Measuring Iconicity

In the continuous condition, it was easy to develop regression
methods to demonstrate similarities between the signal space
and the meaning space. Meaning dimensions were coded to
reflect the continuous way in which they differed, e.g. the
smallest square had a value of 1 while the biggest square had a
value of 5. The signal trajectories were reduced to simple de-
scriptive metrics, such as the mean coordinate value on each
dimension, and the number of time frames reflecting its dura-
tion. Across all signals from all participants in the continuous
condition, the mean coordinate value of the first dimension
that a participant saw (either pitch or volume) was signifi-
cantly correlated with shade of grey. We showed this using
a mixed linear model, controlling for participant number and
whether they started with pitch or volume as random effects
(x*>(1) = 341, p < 0.001). Again, across all signals in the
continuous condition, using a mixed linear model, control-
ling for the same random effects, duration of the signal was
significantly correlated with the size of square (y?(1) = 103,
p < 0.001). Each square size increased the signal by 75 time
frames=+7(std errors).

A problem arises when we try to use the same metrics to
measure iconicity within the discrete condition, as it doesn’t
make sense to assign values to non-ordinal meaning dimen-
sions. To tackle this, we developed a method that uses our
HMM model in combination with the signal repertoire and
the meaning space, to index iconicity. Some meanings in the
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discrete condition are more similar to one another than oth-
ers, e.g. a blue square is more similar to another blue square
with a different texture, than it is to a green square with a
different texture. We try to exploit this to generalise our no-
tion of iconicity to the discrete cases, as well as making it
algorithmic.

To measure iconicity within our results, we used Viterbi
paths from the HMMs to reduce signals to a discrete sequence
of states. This is an analogue of reducing a continuous speech
signal of an uttered word to the string of phonemes which un-
derlies it. A pair-wise distance matrix was then generated
for the signal repertoire using Levenshtein distances between
their Viterbi paths, representing how different each signal is
in terms of number of “phoneme” changes necessary to get
from one to the other. Then, the meanings were put into a
pair-wise distance matrix with one another, to get a compara-
ble measure of how many steps of “semantic” changes it takes
to get from one meaning to the other. Mantel’s test of matrix
correlation was then run between the two distance matrices
to obtain an index of how phonemic changes mirror seman-
tic changes, or how relatively iconic the repertoire is, in the
form of a correlation coefficient between 0 and 1. If the null
hypothesis that there is no correlation between the two matri-
ces can be rejected we tagged that repertoire as iconic. Oth-
erwise, we tagged it non-iconic, regardless of the estimated
magnitude of the correlation.

Our preliminary analysis of this measure indicated we
should expect it to produce some false negatives, i.e. iconic
repertoires tagged as non-iconic?, but our data is too limited
to analyse this measure’s effectiveness adequately using clas-
sical statistics, so we built a Bayesian model to test it. The
number of repertoires getting tagged “iconic” is represented
by a Binomial distribution with a uniform prior on the param-
eter Piconic, Which is the p parameter for the distribution, or
the probability of something getting tagged “iconic”. pijconic
was estimated separately for discrete (p,,,;.) and continuous
(PS,onic) cases, and for each phase.

The expected p§. ;. — pfmnic difference overall was pos-
itive, with 97.25% of the probability density above O (Fig-
ure 4). Although O does fall into the 95% credible interval,
considering the overall distribution, it is reasonable to ex-
pect pSpnic > Pi.,... In other words, the continuous condition
produces more relatively iconic inventories than the discrete
case. Comparing phases within conditions using this measure
did not indicate any significant trends.

Discussion and Conclusion

We were interested in two related hypotheses; 1. whether the
dimensionality of a signal space or modality will affect the
emergence of structure of signals, and 2. whether iconicity
will inhibit emergence of signal structure.

First, we found support that dimensionality had an effect on
the variance within signals, with signal trajectories produced

2 Although it is beyond the scope of this paper, one reason for
this is that our measure is confined to discovering linear correlations
only.

25000 —
20000 ~---
15000~---

10000~ ------ ,,,,,,,,,,,,,

4

-0.2 0.0 0.2 0.4 0.6

Figure 4: The posterior probability distribution of p. .. —
pfwm.c estimated by MCMC, as a histogram of the MCMC
trace. The 95% credible interval is [—0.006,0.331], and the
mean is 0.158. The figure shows that we can expect signals
to be tagged iconic more often when they are formed in the
continuous condition.

using the signal-meaning dimension mismatch having higher
SDs. Greater variance indicates fewer, more distinct build-
ing blocks, which was also evident from the random slopes
of the regression between number of HMM states and par-
ticipant score. These results indicate not only that larger se-
mantic spaces often cause more building blocks to be used,
but also that the type of signals produced depends on the
mapping between the semantic space and the signal space.
Modulating the order in which matching and mismatching
phases are presented changes the participant performance sig-
nificantly, as shown in Figure 3. This effect arises from the
strategy change required between phases with matching or
mismatching spaces. When people gain experience in con-
secutive matching phases, the repertoire they bootstrap for the
following mismatiching phase becomes heavily compressed,
as indicated by the low baseline for the number of states.
However, when participants have to solve the mismatch prob-
lem first, there is an increase in the baseline with every phase,
despite participants being able to employ their strategy from
phase 1:2 in phase 2:2. This result contradicts what partici-
pants self reported in the questionnaire, where they have used
the space in phase 2:2 maximally, no matter what the order of

phases.
Second, we aimed to inform theories relating to the effect

signal-meaning mappings have on the emergence of linguistic
structure. We found support that when relative iconicity was
possible, the majority of participants encoded size with dura-
tion, leaving them to encode shade with the signal dimension
they were first exposed to. However, in order to compare the
iconicity present in the continuous condition with that present
in the discrete condition, we developed our own iconicity in-
dex, using HMMs. We found that signal repertoires in the
continuous condition were more often tagged as iconic than
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in the discrete condition. However, we did have problems in-
cluding false negatives and the failure to confidently establish
a difference between the phases in the continuous condition,
demonstrating the need for further work. To complement the
results on iconicity, we found that signals produced in the dis-
crete condition, where relative iconicity was not possible, had
greater variance than in the continuous condition, and also
had significantly less predictability. We had initially thought
that signals and repertoires with more repeated elements (or
structure) would be more predictable, as they would be com-
prised from elements repeated throughout a repertoire, in the
same way that phonotactic rules make natural languages more
predictable than random strings of phonemes. However, our
results suggest that a static signal will always be more pre-
dictable than one with movement, so perhaps predictability is
not the best measure for structure here.

Further to the evidence pertaining directly to our hypothe-
ses, we found that participants were better at recognising their
signals in the discrete condition, than in the continuous con-
dition. One might think that having a one to one mapping
between signal and meaning would make a signalling sys-
tem more intuitive, and perhaps easier to be productive with.
However, the pressure against iconic systems in the discrete
condition may have pushed participants to make more exag-
gerated differences between their signals within their chosen
strategies. Further to this, signals that rely on relative iconic-
ity are likely to be easier to confuse with each other, making
them maladaptive for discrimination between signals. This
fits in with findings from Monaghan, Mattock, and Walker
(2012) where sound symbolism was found to be beneficial to
category learning, but not beneficial for learning individual
words.

Our experiment has shown that the physical aspects of dif-
ferent linguistic modalities, or signal space proxies, can affect
the structure which can emerge. These effects are very im-
portant to consider before we can isolate the cognitive effects
which experimental work in language evolution is trying to
characterise (Verhoef et al., 2014). We have developed a new
paradigm to address these questions, as well as new meth-
ods to measure structure within continuous signals. However,
HMMs still present two limitations; 1. HMMs do not explic-
itly model time spent in each state, which some participants
used as a strategy, and 2. Gaussian HMMs do not emit signals
that are continuous in the signal space, which is a feature of
the signal space proxy we use. We plan to address these issues
by using explicit duration and autoregressive HMM flavours,
which will allow more thorough comparison of the model and
the modelled repertoire, since such HMMs can emit passable,
continuous signals with explicit timing.

We have also considered the nature of the structure which
we have seen emerging in our study. In previous experimen-
tal work, artificial languages have been shown to emerge to
mirror the structure in a given meaning space (e.g. Kirby et
al. (2008)), which would be considered compositional struc-
ture as each building block is meaningful. Having such

a structured meaning space in our experiment has meant
that participants have generated signal structure which corre-
sponds directly to the meaning space, something which our
post-experimental questionnaires also confirmed. We plan
to run further experiments where there is less internal struc-
ture within the meaning space in order to perhaps generate
something more analogous to phonological structure. How
iconicity affects the emergence of structure at both a com-
binatorial and compositional level is something we are very
interested in pursuing, and we are currently planning future
signal creation experiments with further manipulations to the
signal and meaning space, as well as exploring these ideas
within the context of communication and transmission. We
also plan to further develop our metrics and models for use
in analysing the results of our experiments, as well as helping
inform parameters for new experiments.
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