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Abstract

Young children’s estimates of numerosity increase approxi-
mately logarithmically with actual set size. The conventional
interpretation of this finding is that children’s estimates reflect
an innate logarithmic encoding of number. A recent set of
findings, however, suggest logarithmic number-line estimates
could emerge via a dynamic encoding mechanism that is sensi-
tive to the prior distribution of stimuli. Here we test this idea by
examining trial-to-trial changes in logarithmicity of numeros-
ity estimates. Against the dynamic encoding hypothesis, first
trial estimates in both adults (Study 1) and adults and children
(Study 2) were strongly logarithmic, despite there being zero
previous stimuli. Additionally, although numerosity of a pre-
vious trial affected adult estimates of numerosity, the nature
of this effect varied across experiments, yet always resulted in
a logarithmic-to-linear shift from trial-to-trial. These results
suggest that a dynamic encoding mechanism is neither neces-
sary nor sufficient to elicit logarithmic estimates of numerosity.
Keywords: cognitive development; numerical cognition; spa-
tial cognition; numerosity perception

Introduction
Mapping numbers to space is fundamental to measurement
and mathematics. While spatial-numeric associations are ev-
ident in infant humans and other animals (see McCrink &
Opfer, 2014, for review), the nature of this mapping changes
dramatically with age and education (Ashcraft & Moore,
2012; Booth & Siegler, 2006; Dehaene, Izard, Spelke, & Pica,
2008; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Gunder-
son, Ramirez, Beilock, & Levine, 2012; Hurst, Leigh Mona-
han, Heller, & Cordes, 2014; Siegler & Opfer, 2003).

Developmental changes in number-to-space mapping is
perhaps most evident in number-line estimation, in which
subjects estimate the location of a number (an Arabic numeral
or a number of dots) on a line flanked by two other num-
bers (e.g., 0 and 30). In younger children, the psychophys-
ical function relating numeric value to spatial estimate has
been found to have a larger logarithmic component (λ) than
in older children and educated adults (the “logarithmic to lin-
ear shift,” Siegler, Thompson, & Opfer, 2009, shown in Fig.
1) . Thus, among young children (Booth & Siegler, 2006;
Siegler & Opfer, 2003) and Amazonian indigene (Dehaene,
Izard, Spelke, & Pica, 2008), for example, the number-to-
space mapping is strongly logarithmic (e.g., placing 15 past
the midpoint of a 0-30 number line); however, with age and
schooling, the mapping becomes approximately linear. Lin-
earity of number-line estimation is important because it pre-
dicts several numeric outcomes, including number memory
(Thompson & Siegler, 2010), number categorization (Opfer
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Figure 1: In the “logarithmic-to-linear shift”, children’s es-
timates (shown in greys) initially have a strong logarithmic
component (λ = 1), whereas older children’s and adults’ esti-
mates (shown in black) are approximately linear (λ = 0).

& Thompson, 2008), dyscalculia (Geary, Hoard, Nugent, &
Byrd-Craven, 2008), math scores (Fazio, Bailey, Thompson,
& Siegler, 2014; Gunderson, Ramirez, Beilock, & Levine,
2012), and quality of economic utility judgments (Schley &
Peters, 2014).

Why might early, untutored number-line estimates be log-
arithmically compressed? One idea is that the logarithmic
pattern of number-line estimates for symbolic numbers re-
flects the subjective similarity of the numeric magnitudes
given by the perception of non-symbolic numbers (Dehaene,
2003, 2007; Nieder & Merten, 2007; Siegler & Opfer, 2003).
That is, just as children (and other animals) perceive 14 dots
as being more similar to 19 dots than to 9 dots (Fechner’s
Law), so they place 14 closer to 19 than to 9 on a num-
ber line. This logarithmic pattern of number-line estimates
has also been observed in educated adults under certain cir-
cumstances. For example, under attentional load, adults’ esti-
mates of numerosity also increase in logarithmicity (Anobile,
Cicchini, & Burr, 2012). Further, as adults make number-line
estimates, their reach toward the number-line initially points
to a logarithmic position before being corrected toward a lin-
ear position (Dotan & Dehaene, 2013). Together, these results
point to the logarithmic number-line mapping as a reflection
of the native representation of numerosity, one that can be
extended to numeric symbols–as well as supervened–with a
combination of education and attentional effort.
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Might Dynamic Encoding Yield a Linear-to-
Logarithmic Shift?
A recent proposal has challenged this idea of an untutored
compressive mapping of number to space. According to this
proposal, compressive mapping reflects only a dynamic en-
coding mechanism, such that the estimated magnitude of a
number is influenced by the number previously encountered,
which tends to anchor the next estimate (Cicchini, Anobile,
& Burr, 2014). That is, a logarithmic pattern of estimates
on a number line does not come from a “static logarithmic
transform,” but emerges online from a “central tendency of
judgment,” such that responses tend to be biased toward the
mean of a stimulus distribution. Thus, over the course of
many number-line estimates, what emerges is a linear-to-
logarithmic shift, rather than a logarithmic-to-linear shift. If
correct, this proposal is important in that it calls for a funda-
mental reinterpretation of more than a decade of research.

To test this dynamic encoding hypothesis, Cicchini et al.
(2014) asked five adults to estimate the position of a numeros-
ity (a set of dots) on a number line, with 9 unique numerosi-
ties tested on a total of 144 trials (Fig. 2) . Consistent with a
central tendency of judgment effect, adults tended to under-
estimate the position of a number if the previous number was
small and to overestimate the position if the previous number
was large. This serial dependency was strongest in a dual-task
condition in which adults were asked to perform a number-
line task along with a color conjunction task. Additionally,
this dual task condition yielded estimates with a higher log-
arithmic component (λ = .38) than the single task condition
(λ =.11). These findings led the authors to conclude, “the
strongest evidence for logarithmic coding [of number] was
the logarithmic number line: Because that now has a more
plausible explanation, there exists no evidence at all for loga-
rithmic encoding of number in primate brains” (p. 7871).

The Present Studies
In this paper we revisit whether any causal relation exists be-
tween dynamic encoding and compressive numerosity esti-
mates. Although Cicchini et al. (2014) have shown that at-
tentional load increases both logarithmicity of number-line
estimates and responses to serial dependencies, it remains un-
clear whether dynamic encoding is either necessary or suffi-
cient for logarithmic number-line estimates.

To test whether dynamic encoding is necessary for log-
arithmic number-line estimates, we were particularly inter-
ested in examining subjects’ estimates on the first trial of the
number-line task. On the first trial, no dynamic response
is possible because no previous number had been encoun-
tered. Thus, the predictions of the two accounts diverge most
strongly for first trial responses. If numeric magnitudes were
initially encoded logarithmically, a strong logarithmic com-
ponent should be evident on the first trial. On the other hand,
if compressive mappings simply reflect a central tendency to
judgment, no logarithmic component should be evident.

To examine whether dynamic encoding is sufficient for log-
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Figure 2: Illustration of a number-to-space mapping task

arithmic number-line estimates, we also examined the log-
arithmic component of number-line estimates as a function
of (1) trial position, which necessarily changes the distribu-
tion of previous stimuli, and (2) the overall number of trials,
such that any cumulative dynamic effect could be increased.
If dynamic encoding were sufficient for compressive map-
pings, a linear-to-logarithmic shift would be expected, with
the logarithmic component of number-line estimates increas-
ing steadily after the first trial. In contrast, if experience on
the task simply improves familiarity with the numbers or in-
creases attention to the task, a standard logarithmic-to-linear
shift would be expected as trial position increased.

We explored these issues in adults alone (Study 1), as well
as children and adults (Study 2). An important difference be-
tween the two studies concerned the number of trials. Study
1 was a replication attempt of Cicchini et al. (2014), in which
the same numerosity was presented repeatedly. Study 2 fol-
lowed the more conventional design of number-line tasks,
which present each stimulus only once (Siegler & Booth,
2004; Siegler & Opfer, 2003).

Experiment 1
In Experiment 1, we sought to replicate the central tendency
of judgment effect with a larger number of adult participants
(n = 20) than previously tested (Cicchini et al., 2014; n = 5).
This increase in sample size was necessary to obtain the sta-
tistical power necessary to make meaningful inferences about
single trial judgments.

Methods
Subjects Twenty undergraduate students at the Ohio State
University participated in the study (M = 19.59 years, SD =
1.29 years).
Materials And Procedure Participants were given a non-
symbolic number-line task in which they were shown a set of
dots (5 - 29) on a computer screen and asked to estimate the
number of dots by mouse-clicking a position on a number line
(a line flanked by 0 dots on the left and 30 dots on the right)
(Fig. 2) . On each trial, the set of dots (5 - 29) to be estimated
was shown briefly (2000 ms) and immediately followed by a
random-noise mask; this procedure was employed to prevent
counting. This procedure continued for 3 blocks of 20 trials.
The to-be-estimated numerosities were chosen to sample the
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Figure 3: Experiment 1, A: Median estimates collapsing over all trials. B: Logarithmic component (λ) over all trials. C: Effect
of magnitude of the previous trial.

non-subitizable numbers evenly: 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 17, 18, 19, 29, 21, 22, 23, 27, 28, 29. Compared to the
previous study, in which only 9 numerosities from 0 to 1000
were used (Cicchini et al., 2014), the current study included
most of the numerosities between 0 and 30 except for those
that were subitizable or might serve as landmarks. By doing
so, we examined mappings of all possible numerical values
onto a number line and their trial-by-trial changes more thor-
oughly. The order of numerosities presented was determined
by a Latin square, such that each numerosity was presented
to one subject on each of the 20 trials. After instructions, par-
ticipants started the task with no practice trials or feedback of
any kind.

Results and Discussion
We first examined whether dynamic encoding was necessary
to elicit logarithmic numerosity estimates. To address this,
the positions of participant’s estimates were regressed against
the number of dots presented. For this purpose, we used Cic-
chini et al.’s (2014) combined log-linear regression model:

R = a((1−λ)N +λ
Nmax

ln(Nmax)
ln(N)),

where R denotes the response to given numerosity N, a is a
scaling factor, and Nmax is the numerosity at the right end
of a number line (30 in the current study). The degree of
logarithmicity is denoted by λ (Anobile, Cicchini, & Burr,
2012; Cicchini, Anobile, & Burr, 2014). If λ equals 0, the
estimates are perfectly linear, whereas if λ is 1, the estimates
are perfectly logarithmic (Fig. 1) Collapsing over all trials,
the median estimates were completely linear (λ = .00) (Fig.
3A) .

Weights of the logarithmic component, λ, were tracked on
a trial by trial basis. Against the idea that dynamic encod-
ing is necessary for logairthmic estimates, a large logarith-
mic component was evident on the first trial, but decreased
steadily to the last trial (λ = .60 for the first, λ = .00 for the
last trial) (Table 1 and Fig. 3B ). To test this observation sta-
tistically, we regressed trial number against the logarithmicity

index. Consistent with the nominal values, logarithmicity in-
dex values reliably declined with trial number (b = -.003, p
< .05). These results indicate that logarithmic number-line
estimates do not require any dynamic response to previous
stimulus distributions; rather, they are strongly present on the
first trial. Additionally, if subjects’ estimates were subject to
any serial dependencies, the effect of these were to elicit the
standard logarithmic-to-linear shift, rather than to elicit the
linear-to-logarithmic shift envisioned by the dynamic encod-
ing hypothesis.

We next examined whether any central tendency of judg-
ment effect was even present. To test this, we first followed
Cicchini et al.’s (2014) procedure in which errors for each
trial were categorized into 3 groups based on magnitude of
the previous stimulus (larger by 5, similar, or smaller by 5).
Consistent with a dynamic encoding effect (Fig. 3C) , we
found that when a set of dots was presented after a larger set,
subjects tended to overestimate the number of dots. Also,
when a set of dots was presented after a smaller set, subjects
tended to underestimate the number of dots. Thus, like Ci-
cchini et al. (2014), we found that the average error of the
estimate differed reliably as a function of magnitude of the
numerosity prior to the current one (F(2, 20) = 24.34, p <
.001). Thus, although a quite strong central tendency of judg-
ment was evident in our study, this tendency seemed to have
the effect of increasing the linearity of estimates.

Table 1: Logarithmic component λ in Exp. 1 and Exp. 2.

Group First Trial Last Trial All Trials
Exp.1

Adult .60 .00 .00
Exp.2

Child 1.00 1.00 1.00
Adult .70 .18 .11
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Figure 4: Experiment 2, A: Child and adult median estimates collapsing over all trials. B: Logarithmic component (λ) over all
trials. C: Effect of magnitude of the previous trial in child and adult number line estimation.

Experiment 2
Experiment 2 examined whether dynamic encoding might
also affect children’s estimates of numerosity on the num-
ber line. In previous studies of numerosity estimation using
the number-line task, estimates tended to become more linear
with age. The results of Study 1 suggest that this age differ-
ence might be the result of dynamic encoding mechanisms
increasing the linearity of adults’ otherwise logarithmic esti-
mates. An important difference from Study 1, however, is that
the mapping task was shortened to a block of 20 trials, which
is more typical of number-line studies. If log-like compres-
sion found in the previous work with less than 20 trials were
attributed to dynamic effects, the central tendency of judg-
ment effect would be expected to appear in the shorter task as
well.

Methods
Subjects Seventy 5- to 6-year-old children in Columbus (M =
6.02 years, SD = .45 years) and 80 undergraduate students at
Ohio State (M = 19.75 years, SD = 2.37 years) were recruited
for the experiment.
Materials And Procedure Participants were asked to com-
plete a number line estimation task consisting of one block of
20 trials. The stimuli were identical to those in Study 1, but
each stimulus was presented only once. Adult participants
were instructed to position where the number went on a num-
ber line by clicking a mouse. Children were told to point to
the place where the number belonged, and a female experi-
menter assisted with a mouse click.

Results and Discussion
Logarithmic components were computed as in Study 1. As il-
lustrated in Table 1 and Figure 4A-B , children’s estimates of
numerosity were completely logarithmic (λ = 1) on the first
trial, the last trial, and nearly every trial in between. In con-
trast, adults’ estimates were somewhat linear when collapsing
over all trials (λ = .11), where our observed lambda value was
identical to that observed by Cicchini et al. (2014). These re-
sults narrowly replicate previous findings demonstrating age
differences in numerosity estimation (Siegler & Opfer, 2003).

However, on the first trial, the logarithmicity of adults’ and
children’s estimates (.70 for adults vs. 1.00 for children) were
much closer in value than was evident on the last trial (.18 for
adults vs. 1.00 for children). This difference reflects the fact
that there was a trend for the logarithmicity of adults’ esti-
mates to decrease from trial to trial (b = -.01, p = .10).

Overall, these results were not consistent with the dynamic
encoding explanation for compressed number-to-space map-
ping: compression was again evident on trial 1, before any
dynamic encoding mechanism could have an effect. Nor were
these results consistent with the idea that the representation
of numerosity changes much from childhood to adulthood:
on the first trial, adults’ estimates were about as logarithmic
as childrens’ estimates. Rather, trial-to-trial analyses suggest
that the native representation of numerosity is logarithmic,
but this impression can be supervened (at least in adults) by
repeatedly encountering numerosities.

Did these repeated encounters with numerosities result in
a central tendency of judgment, as predicted by the dynamic
encoding hypothesis? To test this, response errors were again
grouped by the magnitude of the previous trial (Fig. 4C) . The
central tendency could not be found in children’s responses,
though adult mappings changed significantly as a function of
the previous trial (F(2, 20) = 8.52, p < .01). Specifically, a
number position was more underestimated when the previous
number was smaller than when it was similar or larger. Unlike
Cicchini et al. (2014) or Study 1, however, overestimation
after the larger previous number was not observed. To exam-
ine this more closely, estimates were regressed on magnitude
of the previous trial to examine effects of trials given in the
past and future. From a significance test by bootstrapping, we
again found a significant influence of the immediately previ-
ous trial (β = .08, p < .01 for -1 trials). However, magnitude
of the trials presented 6, 8, and 18 trials ago also significantly
affected the position of a current numerosity, but in an oppo-
site way (β = -.08, p < .001 for -6 trials, β = -.10, p < .001 for
-8 trials, and β = -.21, p < .05 for -18 trials): overestimation
after the smaller previous numbers and underestimation after
the larger previous numbers. This significant but negative as-
sociation of a current response with previous trials presented
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as much as 18 trials ago suggests that dynamic effects may be
statistical artifacts at least in a short and traditional version of
the number line task.

General Discussion
Whether estimating the number of dots (Booth & Siegler,
2006) or the value of an Arabic numeral (Siegler & Opfer,
2003), the estimates of young children and unschooled Ama-
zonian indigine tend to increase logarithmically with actual
value, whereas older children’s and adults’ estimates tend to
increase linearly with actual value (“the logarithmic to lin-
ear shift”; Siegler, Thompson, & Opfer, 2009). This loga-
rithmic mapping of number to space is not unique to young
children and unschooled adults. Whether under attentional
load (Anobile, Cicchini, & Burr, 2012), judging the random-
ness of numbers on a number line (Viarouge, Hubbard, De-
haene, & Sackur, 2010), or moving their hand to the number
line to make an estimate (Dotan & Dehaene, 2013), adults
also show a strong logarithmic component to their estimates.
The dominant interpretation of these results is that unsuper-
vised number-line estimates reflect the way that the brain en-
codes numerosity, with neural responses in the intraparietal
sulcus (IPS) showing both a logarithmic-like tuning to a pre-
ferred numerosity and high activity during number-line esti-
mation (Nieder, 2005; Nieder & Merten, 2007; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004; Vogel, Grabner, Schnei-
der, Siegler, & Ansari, 2013).

In this paper, we tested a challenge to the conventional in-
terpretation of logarithmic-encoding of numerosity (Cicchini,
Anobile, & Burr, 2014). According to this dynamic encoding
hypothesis, the logarithmicity of numerosity estimates is not
the default encoding pattern, but occurs as a response to the
previous distribution of numbers encountered (specifically,
overestimating the size of a number after encountering a large
number and underestimating the size of a number encounter-
ing a small number). A critical prediction of this hypothesis
is that estimates of numerosity should be unbiased prior to
encountering any other estimates (such as on the first trial of
a number line task) and that the central tendency of judgment
should correlate with the logarithmic response pattern.

Against the dynamic encoding hypothesis, however, our
data suggest that a dynamic encoding mechanism is neither
necessary nor sufficient for logarithmic estimates of numeros-
ity. If dynamic encoding were necessary for logarithmic esti-
mates, the logarithmic component of estimates would be ex-
pected to be near zero prior to any previous numbers encoun-
tered. However, in both Study 1 and Study 2, we found that
the logarithmic component on the first trial ranged from .6
to .7 (in adults) to 1.00 (in children). This result is consis-
tent with the idea that the default perception of numerosity is
Fechnerian, but not at all consistent with idea that compres-
sion requires a dynamic response.

Additionally, we found the central tendency of judgment
effect was inconsistent and unrelated to logarithmicity of es-
timates. In Study 1, for example, a strong central tendency

of judgment was evident after trial 1, yet it was not suffi-
cient to elicit logarithmic responding. Rather, as subjects
viewed more and more numbers, the logarithmicity of esti-
mates decreased rather than increased. Further, although we
replicated the central tendency of judgment effect in Study
1, where subjects encountered the same numerosity multiple
times, we were unable to find the same tendency in Study 2,
where subjects encountered each numerosity only once. This
finding is not at all consistent with Ciccini et al.’s (2014) char-
acterization of the central tendency of judgment as a domain
general principle of perceptual judgments. Most importantly,
however, the appearence (in Study 1) or non-appearance (in
Study 2) of the central tendency of judgment effect was
unrelated–or inversely related–to the logarithmicity of esti-
mates, which was essentially zero in Study 1 and only .11 in
Study 2. Overall, these results are wholly inconsistent with
the idea that the logarithmicity of numerosity estimates is
caused by a dynamic encoding mechanism that produces a
central tendency of judgment effect.

Why might we observe a logarithmic-to-linear shift unfold-
ing over trials if not due to a central tendency of judgment?
At least two possibilities appeared likely. One possibility–
consistent with Anobile et al. (2012)–is that subjects’ at-
tention to the task improves over time, thereby leading to
increasingly accurate (linear) answers. Consistent with this
possibility, we found that trial number strongly correlated
with accuracy, such that the percent absolute error of adults’
estimates decreased as the experiment progressed (r(58) = -
.45, p < .001). On the other hand, we found no evidence of an
increase in linearity of children’s estimates, which had a log-
arithmic component of 1 on nearly every trial of the task. Nor
does this account explain why a large logarithmic component
(.60 to .70) was present among adults on the first trial.

In our view, a better explanation for our pattern of data was
also suggested by Anobile et al. (2012), where they hypothe-
sized that “both linear and compressed maps can coexist” and
that “withdrawing attention may reveal a more native repre-
sentation of number” (Anobile et al., 2012, p. 458). This
view can certainly explain why adults’ estimates start loga-
rithmic and end linear. The coexistence of linear and com-
pressed maps are also present in developmental data, where
the same child provides either logarithmic or linear patterns
of estimates depending on the familiarity of the numbers (e.g.,
estimating 50 to fall at 50 % of a 0-100 line, but estimating
50 to fall at substantially more than 5 % of a 0-1000 line,
Siegler & Opfer, 2003). Finally, this view is remarkably con-
sistent with the view originally endorsed by Siegler and Opfer
(2003): “we believe that (a) individual children know and use
multiple representations of numerical quantity over a period
of many years; (b) with development, children rely on for-
mally appropriate representations in an increasing range of
numerical contexts; and (c) the numerical context influences
childrens choice of representation” (pp. 237 - 238). Rather
than challenging this account, we think the data on the dy-
namic encoding of numerosity is remarkably consistent with
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