
Chunking in Working Memory and its Relationship to Intelligence 
 

Mustapha Chekaf (mchekaf@univ-fcomte.fr) 
Département de Psychologie EA 3188, Université de Franche-Comté, 30, rue Mégevand 

25030 Besançon Cedex, France 
 

Nicolas Gauvrit (ngauvrit@me.com) 
CHArt Lab (PARIS-reasoning), École Pratique des hautes Études, 4-14 rue Ferrus 

75014 Paris, France 
 

Alessandro Guida (Alessandro.Guida@univ-rennes2.fr) 
CRPCC, EA 1285, Université Rennes 2, Place du Recteur Henri Le Moal 

35043 Rennes Cedex, France 
 

Fabien Mathy (Fabien.Mathy@unice.fr) 
BCL, CNRS, UMR 7320, Université Nice Sophia Antipolis, 24, avenue des diables bleus 

 06357 Nice Cedex 4, France 
 

Abstract 

Short-term memory and working memory are two distinct 
concepts that have been measured in simple and complex 
span tasks respectively. A new span task was designed to 
manipulate a chunking factor while using a procedure similar 
to simple span tasks. This span task allowed studying the 
interaction between storage and processing in working 
memory, when processing is fully dedicated to optimizing 
storage. The main hypothesis was that the storage × 
processing interaction that can be induced by the chunking 
factor is an excellent indicator of intelligence because both 
working memory and intelligence depend on optimizing 
storage. Two experiments used an adaptation of the SIMON® 
game in which chunking opportunities were estimated using 
an algorithmic complexity metric. The results show that the 
metric can be used to predict memory performance and that 
intelligence is well predicted by the new chunking span task 
in comparison to other simple and complex span tasks.  

Keywords: working memory; span tasks; chunking; 
information complexity; fluid intelligence 

Introduction 
The present study is concerned with determining the 

limits of the short-term memory (STM) span, measured by 
the length of the longest sequence of items that can be 
recalled over brief periods of time. One issue when 
measuring individuals’ memory spans is that they are 
inevitably related to other processes that might inflate their 
measures, such as information reorganization into chunks 
(e.g., Cowan, 2001, Cowan, Rouder, Blume & Saults, 2012; 
Feigenson & Halberda, 2008; Mathy & Feldman, 2012; 
Miller, 1956) and long-term memory storage (e.g., Ericsson 
& Kintsch, 1995; Gobet & Simon, 1996; Guida, Gobet, 
Tardieu, & Nicolas, 2012). We aim to investigate how 
information reorganization through chunking can be used to 
optimize immediate recall by developing a new simple span 
task based on chunking. The new task is based on a measure 

of complexity that allows one to capture the sum of 
information that can be grouped to form chunks. In this 
paper, we examine how this new span measure relates to 
intelligence and other span tasks measures.  

Span Tasks Taxonomy 
Simple span tasks traditionally require retaining a series 

of items (digits, words, pictures), whereas in complex span 
tasks, participants have to maintain the to-be-recalled 
material while continuously performing concurrent tasks. 
Therefore, it has been assumed that short-term memory and 
working memory refer to the storage and the storage + 
processing of information respectively. Complex spans have 
been reported to be better predictors of complex activities 
and fluid intelligence than simple spans (Unsworth & Engle, 
2007a, 2007b), and particularly for Raven's Advanced 
Progressive Matrices (Conway, Kane, Bunting, Hambrick, 
Wilhelm, & Engle, 2005). However, simple span tasks are 
still used in several intelligence tests (such as the 
Weschler's) since their use with patients in diverse medical 
contexts is easy, the instructions are simple and the subtests 
can be done without the need of a computer. Interestingly, 
Unsworth and Engle (2007a) recently showed that 
increasing list-lengths could increase the prediction of fluid 
intelligence in simple spans. These results indicated that 
simple spans considered to be only “storage tasks” can be 
viewed as “storage + processing” tasks as well.  

Our idea was to devise a memory span task in which both 
storage and processing could be measured simultaneously 
and independently, and we argue that this can be done by 
inducing a chunking process. The main contribution of the 
present study is to allow independent manipulation of 
processing and storage, sliding across the [(storage) ... 
(storage + processing)] continuum, and to investigate the 
contribution of the processing component to the 
optimization of storage capacity. A second aim was to 
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measure the relationship between this hypothesized 
optimization process and fluid intelligence. 

 

Chunking Span Tasks  
Several studies have studied the formation of chunks in 

immediate memory when encouraging chunking and while 
avoiding long-term learning effects (Bor et al., 2004, 2003; 
Bor & Owen, 2007; Mathy & Feldman, 2012; Mathy & 
Varré, 2013). The present study continues this line of 
research in order to show that participants exposed to simple 
sequences of colors show higher recall for more regular 
sequences without particular relation to prior knowledge in 
long-term memory. Our new task is based on the framework 
of SIMON®, a classic memory game from the 80s that 
consists of immediately reproducing sequences of colors. 
The device lights up colored buttons at random and 
increases the number of colors by adding a supplementary 
color at the end of the previous sequence whenever the 
reproduction by the player is correct. This task has 
interesting properties as it is resistant to practice effects, 
habituation, and proactive interference across trials (Gendle 
& Ransom, 2006). There were two important differences 
between the original game and the present adaptation. First, 
a given chosen sequence was not presented progressively 
but entirely in a single presentation. For instance, instead of 
being presented with a “1) blue, 2) blue-red, 3) blue-red-red, 
etc.”, that is, three series of the same increasing sequence 
until a mistake was made, the participant in this case would 
be given a blue-red-red sequence from the outset. If correct, 
a new sequence was given, possibly using a different 
complete length, so there was no sequence of increasing 
length that could have favored a long-term memory process. 
Second, no sounds were associated with any of the colors. 

Complexity for Short Strings 
To estimate the chunking opportunities of the sequences 

of colors, a compressibility metric was sought to provide an 
estimation of any possible grouping process. More 
complexity means less chunking opportunities. Less 
complexity means that a sequence can be re-encoded for 
optimizing storage and in this case, our idea is that 
processing takes precedence over storage. A major difficulty 
one encounters in this type of study is due to the apparent 
lack of a normalized measure of compressibility—or 
complexity. Some formal measures such as entropy are 
actually widely used as proxy for complexity, but they have 
come under harsh criticism (Gauvrit, Zenil, Delahaye, & 
Soler-Toscano, 2014). For instance, entropy only depends 
on the relative frequencies of the different outcomes. Thus, 
according to entropy, the two strings “red-blue-red-blue-
red-blue-red-blue” and “red-blue-blue-red-blue-red-red-
blue” are equally complex since the two colors appear in the 
same proportion in each sequence. The fact that the first one 
can be compressed as “4 times red-blue” is not detected by 
entropy. Our compressibility metric is based on algorithmic 
complexity, which formally is defined as the length of the 

shortest program that outputs a string (Li & Vitányi, 2009). 
Contrary to long strings, the algorithmic complexity of short 
strings (3-50 symbols or values) could not be estimated 
before recent breakthroughs (Delahaye & Zenil, 2012; 
So1er-Toscano, Zenil, Delahaye, & Gauvrit, 2013, 2014), 
thanks to which it is now possible to obtain a reliable 
estimation of the algorithmic complexity of short strings (3-
50 symbols or values). 

The algorithmic probability m(s) of a string s is defined as 
the probability that a randomly chosen deterministic 
program running on a Universal Turing Machine will 
produce s and halt. This probability is related to algorithmic 
complexity by way of the algorithmic coding theorem which 
states that K(s) ~ –log2(m(s)), where K(s) is the algorithmic 
complexity of s. Instead of choosing random programs on a 
fixed Universal Turing Machine, one can equivalently 
choose a random Turing Machine and have it run on a blank 
tape. This has been done on huge samples of Turing 
machines (more than 10 billions Turing Machines), and led 
to a distribution d of strings, approximating m. The 
algorithmic complexity for short strings of a string s, acss(s) 
is defined as –log2(d), an approximation of K(s) by use of 
the coding theorem. 

The idea is not that the human brain operates as Turing 
machines, but in fact, this method is used here to provide 
approximations to capture any kind of regularities in a 
string. Algorithmic complexity is, in a way, the normative 
ultimate measure of compressibility or “chunkability”. For 
example, Table 1 shows length and complexity of a random 
sample of sequences used in our chunking span tasks and 
presented to the participants, after being coded into 
sequences of colors. 

 
Table 1: Examples of sequences; Note: each digit codes 

for a specific color, for example, “31131331” codes for  
“red-blue-blue-red-blue-red-red-blue” 

 
Sequence Length Complexity 
2223332 7 21.4476 
2232113 7 22.5040 
12121212 8 22.7576 
31131331 8 24.8765 
424242244 9 26.7262 

 

Relationship Between Storage × Processing and 
Intelligence 

Bor and colleagues (Bor, et al., 2004; Bor, Duncan, et al., 
2003; Bor & Owen, 2007) introduced systematic regularities 
that encouraged the participants to chunk redundancies in 
list of digits. More formally, chunking was induced in our 
task by manipulating the algorithmic complexity of the to-
be-remembered series of colors, which allowed varying 
gradually the probability to form a chunk in working 
memory.  
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It is assumed that the most complex sequences cannot be 
easily reorganized and as such they reduce processing 
opportunities and mainly involve storage. Conversely less 
complex sequences are assumed to favor the occurrence of 
chunking via reorganization of the material and should thus 
involve storage × processing. This interaction aims to 
identify situations where an individual having low storage 
and high processing capacities could obtain a span similar to 
someone having high storage and low processing capacities. 

Experiment 1 only aimed at studying the storage × 
processing capacity and verified its relationships to other 
span tasks and IQ. Experiment 2 used two conditions 
enabling us to hypothesize a better separation between the 
storage and storage × processing capacities, and their 
relationships to other span tasks and IQ.  

Experiment 1 was very liberal with random sequences of 
colors, which lead us to develop a specific estimation of 
memory capacity. Experiment 2 on the contrary used similar 
sequences across participants that allowed us to use a more 
standard scoring method for computing a memory span. 

Experiment 1 

Method 
Participants and Procedure  
The tests were administered to 183 students (Mage = 21; SD 
= 2.8) in the following order: the Chunking span task 
(SIMON), the Working Memory Capacity Battery (WMCB) 
(Lewandowsky, Oberauer, Yang & Ecker, 2010) and 
Raven’s APM (Raven, 1962) (set #2, 40 minutes). The 
WMCB includes four tasks: a memory updating task (MU), 
two complex span tasks (operation and sentence span, OS 
and SS), and a spatial simple span task (spatial short-term 
memory, SSTM). 
Chunking Span Task  

Fifty random to-be-memorized sequences of colored 
squares appearing one after the other was displayed (see 
Figure 1). In the recall phase, four colored buttons were 
displayed and participants could click on them to recall the 
sequence they had memorized. 

 

 
 

Figure 1: Example of a sequence of three colors of the 
Chunking Span Task. 

Results 
Effect of Complexity  
The relationship between complexity measure and sequence 
length seems quite obvious. However, in order to assess and 
compare the respective impacts of complexity and list-
length we used a logistic regression. A stepwise forward 
model selection based on BIC criterion suggested dropping 
the interaction term. This model showed a significant 
negative effect of complexity (z(9147) = -23.84, p < .001, st. 
coef. = -5.7 [coef. -.69]) as shown in Figure 2, and although 
length had a detrimental effect on recall (z(9147) = 16.27, p 
< .001, st. coef. = 3.74 [coef. 1.46]), this effect was more 
than compensated by the detrimental effect of complexity, 
meaning that long simple strings were easier to recall than 
shorter but more complex strings. In other words, the effect 
of complexity was stronger than the effect of length. 
 

 
 

Figure 2: Proportion correct as a function of complexity 
in Experiment 1. Note: Error bars are +/- 1 SE. 

 
Correlations and factor analysis 

Table 2 shows the correlations between measures 
aggregated by participants, including the global WM score 
for the entire WMCB, the Raven’s APM (RAVEN), and the 
Simon span task (SIMON). The correlation matrix shows 
that in terms of prediction of the Raven’s score, the Simon’s 
score is comparable to the composite WM score produced 
by the WMCB (this range of correlations corresponds to 
that found in the literature).  

 
Table 2: Correlation matrix for Experiment 1.  

Note: ** p < .001. 
 

 SIMON WM 
RAVEN .428** .437** 
SIMON  .531** 

 
One important aspect to recall is that SIMON, MU, and 

SSTM each allow the stored items to be processed while 
both OS and SS are standard complex span tasks that 
separate processing and storage. One hypothesis was that 
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performance on the SIMON span task should better 
correlate with MU and also with SSTM. A second 
prediction was based on the idea that the tasks in which the 
stored items are fully processed (i.e., involving storage × 
processing) would better predict the average Raven’s score. 
The correlation between MU and the Raven was effectively 
the highest (r = .572), and the Simon was the second task to 
better correlate with the Raven. The Simon also best 
correlated with both MU and SSTM (two tasks in which 
processing is effectively dedicated to storage).  

We conducted a principal component analysis to extract 
two factors, which were expected to separate a storage 
component from a processing component. The two 
components accounted for 40% and 30% of the variance 
respectively (the respective eigenvalues being 2.4 and 1.8, 
instead of 3.3 and .89 for the unrotated initial solution). We 
interpreted the two factors as clearly separating the complex 
span tasks (in which processing is estimated alone, while 
processing is saturated) and the tasks in which processing 
was dedicated to storage, but it is still difficult to see how 
the processing and storage components are separated in 
these analyses by the respective factors. The data were then 
submitted to a confirmatory factor analysis using IBM SPSS 
AMOS 21. A latent variable representing a construct in 
which storage and processing are separated and another 
latent variable representing a construct in which both 
processes interact (the processing component) were 
sufficient to accommodate performance. The fit of the 
model is shown in Figure 3 (χ2(7) = 2.82, p = .90; CFI, 
comparative fit index = 1.0; RMSEA, root mean squared of 
approximation = 0.0; RMR, root-mean square residual = 
.063). These results, confirmed by a comparison of 
correlation coefficients (z = 15.7, p < .001), showed that the 
Raven’s scores are better predicted by the construct in 
which storage and processing are combined (r = .64, 
corresponding to 41% of shared variance, instead of r = .36 
when separated), a construct that can be reflected in the 
present study by our chunking span task, a memory 
updating task, and a spatial simple span task.  

 

 
 

Figure 3: Path model for factor analysis from Exp. 1. 
Correlations and loadings are std. estimates. OS, operation 

span; SS, sentence span; SIM, chunking span task; MU, 
memory updating; S and P, storage and processing; RAV, 

Raven’s APM. 

Experiment 2 

Method 
Participants and Procedure  

The tests were administered to 107 students (Mage = 22.9, 
SD = 5.9) in the following order: the Simon chunking span 
task (SIM), the digit simple-span subtests of the WAIS-IV 
(Wechsler, 2008): the Digit Span Forward (DSF) which 
requires recalling a series of digits in correct order, the Digit 
Span Backward (DSB) which requires recalling a series of 
digits in reverse order, and the Digit Span Sequencing 
(DSS) which requires recalling a series of digits in 
ascending order, and finally the Raven (set #2, 40 minutes; 
N = 95 because the Raven was optional for getting extra 
course credits). 
Chunking Span Task  

Procedure and scoring of the span followed that of the 
WAIS: the length of the presented sequences progressively 
increased, starting with length two, then three, etc. The 
longest span attained at least once was considered as the 
subject’s span. Each participant was administered two 
complexity conditions. The Simple condition was conducive 
to inducing a chunking process, while the Complex 
condition allowed less chunking opportunities and as such 
was considered as mostly soliciting the storage component.  

Results 
Effect of Complexity  

The logistic regression (see Figure 4) showed a 
detrimental effect of complexity on recall (z(2651) = 9.77, 
p < .001, st. coef = -6.41 [non standardized: -.95]) and also 
an effect of length (z = 6.273, p < .001, st. coef= 3.94 [non 
standardized: 2.01948]).  

 

 
 

Figure 4: Proportion correct as a function of complexity 
in Experiment 2. Note: Error bars are +/- 1 SE. 

 
Correlations and factor analysis 

Despite the moderate difference between the two mean 
spans observed between the simple and complex conditions, 
Table 3 shows that these two conditions highly correlated 
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(r = .42), in comparison with other variables. Similarly, 
DSF and DSB shared the greatest percentage of variance 
(r = .47, p < .001), as well as DSB and DSS (r = .48, 
p < .001). Thus the digit spans showed high mutual 
correlation, but none of the digit span tasks correlated more 
with either Simon simple or Simon Complex than the two 
together. One possibility is that the participants could still 
chunk many of the most complex sequences, making the 
two Simon conditions akin, and accounting for the slight 
difference of 1.25 colors reported above. The possibility that 
participants chunk the less compressible sequences does not 
contradict compressibility theories because the estimate of 
the compressibility of a string is an upper bound (meaning 
that there can always be a way to compress a string more 
than it is expected). Regarding correlations with the Raven, 
the highest correlation was found with DSB, but the 
multicollinearity of the data makes interpretation of the 
pairwise correlations difficult.  

 
Table 2: Correlation matrix for Experiment 2. Note: 

SIMPL, COMPL, mean span in simple and complex 
conditions; DSF, DSB, DSS, Digit Span Forward, 

Backward, Sequencing; Note: ** p < .001. 
 

 Compl DSF DSB DSS RAV 
Simpl .422** .294** .337** .157** .413** 
Compl   .229** .353** .310** .385** 
DSF   .473** .273** .290** 
DSB    .476** .446** 
DSS     .297** 

 
Principal component analysis was used to explore our 

data and to extract two factors (which were expected to 
separate the chunking span tasks and the WM span task). 
The two factors clearly separated the digit span tasks and 
the chunking span tasks. It is worth noting that the Raven 
loaded with the chunking span tasks. 

The data were submitted to a confirmatory factor analysis 
using IBM SPSS AMOS 21 in order to test the prediction 
that tasks allowing the processing and storage components 
to fully function together in association to optimize storage 
are better predictors of general intelligence than the STM 
span tasks of the WAIS. A latent variable representing a 
chunking construct (derived from the Simon span tasks) and 
another latent variable representing a simpler STM construct 
(derived from the digit span tasks of the WAIS) were 
sufficient to accommodate performance. The fit of the 
model shown in Figure 5 was excellent (χ2(7) = 3.2, p = 
.87; CFI, comparative fit index = 1.0; RMSEA, root mean 
squared of approximation = 0.0; RMR, root-mean square 
residual = .049; AIC and BIC criterions were both the 
lowest in comparison to a saturated model with all the 
variables correlated with one another and an independence 
model with all the variables uncorrelated). These results, 
confirmed by a comparison of correlation coefficients (z = 
1.82, p = 0.03), showed that the Raven’s scores are best 

predicted by the Chunking latent variable, a construct that 
can be reflected in the present study by the two chunking 
span tasks. 

 

 
 

Figure 5: Path models for confirmatory factor analysis 
from Exp. 2. Correlations loadings are std. estimates. Note: 

Simple, Complex, simple and complex conditions; DSF, 
DSB and DSS, Digit Span Forward, Backward and 

Sequencing. 
 

General Discussion 
In two experiments, we found that span tasks involving a 

chunking process were structurally closer to the 
performance on the Raven's than any complex span task of 
the WMCB and any of the simple span tasks of the WAIS. 
The present study shows that simple span tasks 
can effectively compete with complex span tasks, and this 
was achieved here by prompting the creation of chunks in 
immediate memory while avoiding a long-term learning 
effect. 

Therefore, it seems likely that the span tasks better 
correlate with higher cognitive processes when they prompt 
reorganization of information. The present study concludes 
that processing and storage should be examined together 
when processing is fully dedicated to the stored items, and 
we believe that the interaction between storage and 
processing that best represents a chunking process in 
immediate memory can provide a true index of 
WM capacity. This is in line with Unsworth, Redick, Heitz, 
Broadway & Engle (2009) who argue that processing and 
storage should be examined together because WM is 
capable of processing and storing information 
simultaneously.  

Conclusion 
The rationale of the present study was that sequences of 

colors of the Simon game contain regularities that can be 
mathematized to estimate a chunking process, and that the 
quantity of chunking induced in a to-be-recalled sequence 
can represent the processing demand. The chunking span 
task allows the processing and storage components to fully 
interact to optimize storage. Although it is not commonly 
accepted in the literature that span tasks can take benefit 
from favoring the processing of the stored items (which 
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explains the plethora of complex span tasks in the 
literature), the chunking span task was found a reliable 
predictor of general intelligence in comparison to other 
simple or complex span tasks. 
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