Connecting learning, memory, and representation in math education

Martha Alibali\(^1\) (mwalibali@wisc.edu)
Chuck Kalish\(^2\) (kalish@wisc.edu) &
Timothy T. Rogers\(^1\) (ttrogers@wisc.edu)
\(^1\)Department of Psychology, UW Madison
1025 W. Johnson Street, Madison, WI 53706 USA
\(^2\)Department of Educational Psychology, UW Madison
1202 W. Johnson Street, Madison, WI 53706 USA

Vladimir Sloutsky (sloutsky.1@osu.edu)
Department of Psychology, Ohio State University
1835 Neil Avenue, Columbus, OH 43210 USA

Keywords: numeracy; math; perception; learning; memory;
cognition; models; education

Introduction

In math education the goal is for children not only to
master the materials and problems presented, but to
understand underlying principles and properties that can be
applied broadly to new problems and situations. Teachers in
the classroom and policy-makers in Washington thus are both
faced with what is essentially a cognitive question: What
instructional regimes and practices will produce rapid
learning, deep understanding, and broad transfer?

This question has often been approached without
connection to cognitive theories of learning, memory, and
representation, but the gap has begun to narrow. On one hand,
it is now known that domain-general learning mechanisms
can acquire quite abstract and structured representations that
go beyond the perceptual structure of the environment—a
critical requirement for any theory of mathematical
knowledge. Conversely studies in math cognition have
revealed counter-intuitive behaviors that find ready
explanations in cognitive models of learning in other
domains. For instance, children, adults, and even math
teachers reliably judge some three-sided figures to be better
triangles than others, sometimes denying that irregular three-
sided figures are in fact triangles.\(^1\) Children transitioning
from arithmetic to algebra often generate incorrect solutions
to equations because they have learned to ignore the equal
sign\(^2\). Such examples suggest that math learning can be
subject to the same factors that govern learning other
domains. Yet it remains unclear whether such effects are
epiphenomenal, or whether they hint at important common
principles underlying concept acquisition across multiple
domains.

Our symposium investigates this question by bringing
together scientists whose research spans the gap between
cognitive and educational science in the domain of
mathematical knowledge. Martha Alibali, Chuck
Kalish and Tim Rogers consider how cognitive memory
models from non-mathematical domains can shed light on the

patterns of transfer shown by children and adults in
arithmetic. Phil Kellman and Christine Massey will show
that mathematical competency can improve when children
learn to efficiently encode the perceptual structure of
equations. Vladimir Sloutsky will consider interrelationships between learning of mathematical and
object concepts in development. Jay McClelland and Kevin
Mickey will discuss new research investigating the
representational prerequisites that might underlie conceptual
understanding of trigonometric functions. A short group
question period will follow the four talks.

Alibali, Kalish & Rogers: Connecting learning in
mathematical and non-mathematical domains.

Different learning tasks can elicit qualitatively different
patterns of memory and generalization. In paired-associates,
participants who learn to produce "dishowel" to the probe
"locomotive" can correctly generate the reverse pairing
(producing "locomotive" given "dishowel"), but, because
pairs are arbitrary, cannot generalize to new probes (e.g.
"caboose"). In categorization, participants remember features
that aid in predicting the category label and use these to
generalize, but fail to learn or exploit other item properties.
In property induction, participants learn slowly but remember
and generalize all manner of properties.\(^3\) In experiments with
adults and children we show analogous phenomena in
arithmetic learning. When the graphical elements of an
equation are viewed as arbitrary symbols, participants learn
individual problems without transfer, as in paired associates.
When the quantitative "meaning" of the problem symbols is
highlighted, participants acquire a transferable mapping from
problem quantities to response quantities, similar to
categorization. The extent of transfer in this setting depends,
however, on the task: practice retrieving a missing sum
transfers to new missing-sum problems, but not to related
missing-addend problems. The broadest transfer occurs when
participants practice with a mix of problem types, in a setting
that emphasizes quantitative relationships among elements—
the same properties that produce broad transfer in object
concepts. These results suggest a tighter coupling between
learning in mathematical and non-mathematical domains than has previously been appreciated.

Kellman & Massey: Perceptual structure and adaptive learning in math education.

While learning of complex structure is often attributed to higher-order processes, we argue that perceptual learning (PL)—experience-driven changes in the process and content of information extraction—plays a much greater role than has previously been appreciated. We consider PL as a crucial component of learning and expertise in mathematics and other complex cognitive domains. Whereas most formal instruction emphasizes declarative and procedural components of learning, learning to extract relevant structure in mathematical problems and representations provides the pattern recognition required for effective use of facts and procedures. We will briefly review research on PL interventions in the form of perceptual/adaptive learning modules (PALMs) that facilitate discovery of structure and recognition of patterns in mathematical domains, including preliminary results from a large efficacy study currently in progress. These efforts illustrate the promise of PL interventions, as shown on tests of mathematical competence. We also examine direct effects of PL interventions on psychophysical endpoints, such as efficient encoding of equations. Results indicate that even relatively brief PALM interventions aimed at improving students’ seeing of structure and transformation in algebraic equations leads to reliable changes in basic information extraction. Encoding improvements were shown most strongly by participants who were initially less proficient at algebra. These changes, which were detectable 24 hours after training, provide direct evidence for durable changes in information encoding produced by a PALM targeting a complex mathematical skill.

Sloutsky: What can we learn about mathematical cognition from object category learning?

The primary difference between mathematical and object concepts lies in category structure: the former are rule-based and statistically sparse (i.e., few category-relevant and many irrelevant features) while the latter are statistically dense (i.e., many category-relevant features). Research in object category learning may then elucidate acquisition of math concepts. We review evidence that children distribute attention among multiple stimulus dimensions, making it difficult to learn statistically sparse concepts like those central to mathematics. Consequently children and adults may extract different structures from the same learning experiences. Participants learned a category possessing both (a) a single deterministic rule-like feature and (b) multiple inter-correlated probabilistic features. Whereas 4-5-year-olds used multiple probabilistic features to generalize and were more likely to remember these, adults used the deterministic feature to generalize and were less likely to remember other features. When the deterministic feature was made salient, children were more likely to use it in generalization, but they continued to use and remember all features. Thus, though their response strategy changed, their representation did not. From these findings we argue that perceptually-rich problem instantiations may hinder generalization in math because, like stimuli in our research, they possess one relevant deterministic feature among many irrelevant features. If children naturally acquire dense probabilistic category structures, they may fail to generalize practice problems with sparse structure. We then demonstrate such an impaired transfer in learning of mathematical concepts in young children.

McClelland & Mickey: Building a core conceptual structure for trigonometry.

How can we help students gain a grasp of the basic ideas underlying trigonometric functions? Our approach links to the ideas of Robbie Case, who understood the mental number line as a core conceptual structure for two-digit addition and subtraction upon which one could build an understanding of decimal numbers and fractions.¹ We extend this approach to the 2D coordinate plane, taking the ‘unit circle’ as a core structure for grounding the extended definitions of the trigonometric functions outside the range of right triangles. In empirical studies with Stanford undergraduates, we have found that (a) students who report using the unit circle do better on an assessment of their understanding of trigonometric identities than those who report using rules or other visualizations; (b) a brief presentation of the core unit circle ideas produces better generalization to identities not explicitly covered in the presentation, relative to a rule-based presentation; but (c) only those performing above chance on a pre-test showed the benefit from the presentation. A second study assessed the unit-circle intervention on a group of high-school seniors, none of whom benefitted. This has led us to construct a structured series of didactic presentations and interleaved activities designed to ensure students have a well-grounded understanding of all of the elements on which the unit circle definitions build. We will report the results of new studies with this interleaved intervention, and will consider the implications of our studies for both education and for understanding the cognitive underpinnings of math knowledge.

References