Uncertainty and exploration in a restless bandit task

Maarten Speekenbrink (m.speekenbrink@ucl.ac.uk)
Emmanouil Konstantinidis (emmanouil.konstantinidis.09@ucl.ac.uk)
Department of Experimental Psychology, University College London
Gower Street, London WC1E 6BT, England

Abstract
Decision-making in noisy and changing environments requires a fine balance between exploiting knowledge about good courses of action and exploring the environment in order to improve upon this knowledge. We present an experiment in which participants made repeated choices between options for which the average rewards changed over time. Comparing a number of computational models of participants’ behaviour in this task, we find evidence that a substantial number of them balanced exploration and exploitation by considering the probability that an option offers the maximum reward out of all the available options.

Keywords: Dynamic decision making; Exploration-exploitation trade-off; Restless multi-armed bandit task

Introduction
In many situations, the expected utility of an action is initially unknown and can only be learned from experience. In such situations, we can take actions in order to maximise the utility experienced (exploiting the environment), but also take actions which might not provide as good outcomes, but which help us to learn more about the outcomes associated with that action (exploring the environment). Performing well in these situations requires a fine balance between exploration and exploitation. Multi-armed bandit tasks have proven a useful paradigm to study the exploration-exploitation trade-off, theoretically (e.g., Gittins, 1979; Whittle, 1988) as well as empirically (e.g., Acuna & Schrater, 2008; Daw et al., 2006; Knox et al., 2012; Steyvers et al., 2009).

For standard bandit problems, in which the average rewards of unchosen bandits remain unchanged and future rewards are exponentially discounted, the optimal decision strategy can be determined by calculating a “Gittins index” for each arm of the bandit, reflecting the expected total future rewards associated with the arm at a particular time (Gittins, 1979). Acuna & Schrater (2008) showed that, allowing for computational constraints, human decisions follow this optimal strategy reasonably well. Although standard bandit tasks have generated useful results, in real-life situations, the expected rewards of unchosen options do often change. For instance, when choosing a restaurant, we should allow for the possibility that the quality of the food on offer changes over time (cf., Knox et al., 2012). For what is now a “restless” bandit problem, optimal decision strategies have proven elusive, although heuristic strategies have been proposed (Whittle, 1988). Daw et al. (2006) investigated human decision making in a restless bandit problem, and found that exploitation appeared to be unrelated to the uncertainty regarding the average reward of each arm. Exploration was best described by a heuristic strategy in which arms are chosen probabilistically according to their relative expected rewards (the “softmax” decision rule). The lack of an effect of uncertainty on explorative decisions is disappointing, considering that rationally, this should be a driving factor of exploration (Cohen et al., 2007). Knox et al. (2012) used a restless two-armed bandit task with a simplified structure, which allowed them to derive the optimal decision strategy. In their task, the rewards of the two arms alternated in their superiority, “leapfrogging” over each other. The results showed that people appeared to act reflectively, updating their beliefs that the arms switched in superiority, but that they could not use these beliefs to plan further ahead in time than for the immediate decision. Moreover, in contrast to Daw et al., Knox et al. found evidence that exploration was driven by uncertainty regarding the associated rewards. As Knox et al. used a much more constrained task than Daw et al., it is unclear whether this difference is due to the task, or to the way in which the effect of uncertainty on decisions was formalized. In the present paper, we will try to reconcile these conflicting results, by considering an alternative way to incorporate uncertainty into explorative decisions than the heuristic strategy used by Daw et al.

To illustrate our model, consider a relatively simple task in which, on each trial t, the reward $R_j(t)$ associated with arm j is drawn from a Normal distribution, with a mean $\mu_j(t)$ that changes over trials according to a random walk

$$R_j(t) = \mu_j(t) + \epsilon_j(t)$$

where

$$\mu_j(t) = \mu_j(t-1) + \xi_j(t)$$

and

$$\epsilon_j(t) \sim N(0, \sigma_\epsilon)$$

$$\xi_j(t) \sim N(0, \sigma_\zeta)$$

An ideal Bayesian learner with knowledge of the properties of this process would update her belief about the average rewards based on the observed rewards; $p(\mu_j(t) | R_{1:t}, C_{1:t})$, the posterior distribution of arm j’s average reward, conditional upon the observed rewards $R_{1:t}$ and choices $C_{1:t}$, can be computed by the Kalman filter (cf. Daw et al., 2006). This posterior distribution, together with the structural model, allows the agent to derive a prior distribution $p(\mu_j(t+1) | R_{1:t}, C_{1:t})$ for the next trial, which reflects the current beliefs about each arm at the moment of choice. How should these beliefs be used to choose the next arm to play? A “greedy” agent would always choose the arm with the highest prior mean. While this is optimal on the last play, if there are more plays left, it is generally beneficial to sometimes choose a different arm in order to check that its average reward has not surpassed that of the currently favoured arm. The longer an arm has not been played, the higher the (subjective) probability that it now has a higher average reward. If exploration is based on this probability, the probability of exploration increases with the time that an arm has not been played. The difference between this explorative strategy and a greedy one is illustrated...
Figure 1: Learning and decision making in a restless two-armed bandit task. Two arms (blue and red) have changing average rewards (broken lines), generated according to Equation 1. On each trial, an agent chooses an arm (dots at the bottom of the graphs), observes the associated reward, and then updates her belief about the average reward for that arm. These posterior beliefs form the basis of the prior belief on the next trial (solid lines show the prior means and areas the 95% highest density intervals of the prior distribution). The “greedy” agent (top panel) always chooses the arm with the highest expected reward. After sampling once from both arms, she always chooses the one with the highest expected reward until the prior mean falls below the prior mean of the unchosen arm. A problem with this strategy is that it ignores the uncertainty in the prior distribution, which increases for unchosen arms due to the innovations $\xi_j(t)$. After not choosing an arm for a prolonged period, the probability that the mean reward of this arm is higher than the mean reward of the chosen arm can become substantial. The “explorative” agent (bottom panel) bases her choices on this probability. On each trial she chooses an arm randomly according to the probability that this arm will provide the highest reward in the set of arms. This clearly gives better results than the greedy strategy and the agent mostly chooses the arm with the highest average reward.

in Figure 1. As shown there, the explorative strategy clearly outperforms the greedy strategy.

The probability that an arm provides the maximum reward naturally combines both the expected value (mean) and the associated uncertainty (variance) of the prior distributions. While a strategy which bases decisions on this probability is myopic in the sense that it is solely based on the chance of obtaining the highest possible reward for the immediate decision, it nevertheless allows for a reasonable balance between exploitation and exploration. As the probability of maximum reward increases with uncertainty, the probability of exploring an arm increases the longer it has not been observed. But the probability of maximum reward is also dependent on the expected reward, such that this increase is larger for arms that are closer to the currently favoured arm in expected reward. While Daw et al. (2006) did not find evidence that exploration is related to uncertainty, they only considered a heuristic decision strategy with an exploration bonus which increased linearly with the standard deviation of the prior distribution. The probability of maximum reward strategy offers a more principled way in which to combine expectancy and uncertainty and results of a simulation study showed that it outperforms more heuristic strategies. The strategy generalizes the belief model proposed by Knox et al. (2012) to the more general situation of a restless multi-armed bandit.

In the present paper, we investigate whether humans performing a restless multi-armed bandit task use this strategy to make their decisions. We compare the strategy to a number of heuristic decision strategies proposed for multi-armed bandit tasks, contrasting also Bayesian “model-based” learning and two popular “model-free” learning strategies.

Method

We investigated decision-making in a restless four-armed bandit task similar to that used by Daw et al. (2006). Four versions of the task were constructed in which (a) the average rewards of the decks changed either completely unpredictably or with a small trend, and (b) the volatility of the changes was either stable or there were periods of relatively high volatility. We expected people who notice an increase in volatility to make more exploratory decisions, due to the associated increase in uncertainty. People who notice the trends could be expected to make relatively less exploratory decisions, as the changes are more predictable.

Participants

Eighty participants (41 female), aged between 18 and 56 ($M = 22, \ SD = 6.72$), took part in this study on a voluntary basis. Participants were randomly assigned to one of the four experimental conditions: stable volatility with trend (ST), stable volatility without trend (SN), variable volatility with trend (VT), and variable volatility without trend (VN).

Task

All participants completed a restless four-armed bandit task. On each of 200 trials, they were presented with four decks
of cards (arms) and asked to draw a card from one of them. After choosing an arm, they were informed of the reward associated with their choice. For each arm $j = 1, \ldots, 4$, the reward $R_j(t)$ on trial t was randomly drawn from a Normal distribution with a mean $\mu_j(t)$ which varied randomly and independently according to a random walk. More precisely, the rewards were generated according to the following schedule:

\[
R_j(t) = \mu_j(t) + \varepsilon_j(t) \\
\mu_j(t) = \lambda \mu_j(t-1) + \kappa_j + \zeta_j(t) \\
\varepsilon_j(t) \sim N(0, \sigma^2) \\
\zeta_j(t) \sim N(0, \sigma^2)
\]

(2)

The averages of the decks were initialized as $\mu_j(1) = -60, -20, 20, 60$ for decks 1 to 4 respectively. A decay parameter $\lambda = .9836$ was used so that values remained closer to 0 than with a pure random walk. In the ST and VT conditions, the trend parameter had values $\kappa_j = 0.5, 0.5, -0.5, -0.5$ for decks 1 to 4 respectively. In the SN and VN conditions, the values were $\kappa_j = 0$ for all decks. The reward error variance was $\sigma^2 = 16$ in all conditions. The innovation variance was $\sigma^2(t) = 16$ on all trials in the stable volatility conditions (SN and ST). In the variable volatility conditions, the innovation variance was the same on half of the trials. On trials 50-100 and 150-200, the innovation variance was increased to $\sigma^2(t) = 256$. The schedule in Equation 2 was used to generate four sets of reward sequences in each condition, matching the seed in the random number generated used over conditions. One example of the resulting rewards in the four conditions is provided in Figure 2. A similar structure was used by Daw et al. (2006), but they didn’t include trends or changes in volatility and used only positive rewards.

Procedure

Participants completed the 200 trials of the task individually at their own pace in a single session. At the start of the task, participants were told that they would be presented with four decks of cards and that their task was to select on each trial a card from any deck they chose. The only goal of the game was to win as many points as possible. Participants were informed that some decks may be better than others, but that the amount they tend to give may vary, so that this can change. They were not informed of the total number of trials in the task.

After reading the instructions, participants started the experimental task. On each trial, they were presented with the four decks of cards and selected a card from one deck via a mouse click. The number of points won or lost was then displayed for 1.5 seconds, along with either a smiley or a frowning face for wins or losses respectively. Throughout the task, a counter displayed the total points received thus far.

Behavioural results

One participant (age = 21) in the SN condition was excluded from further analysis as she only sampled from one bandit throughout the whole task. All other participants sampled from each bandit at least once.

Performance

Given the differences between the conditions in obtainable reward magnitudes (see e.g. Figure 2), total reward obtained is not an unambiguous measure of performance. We therefore chose to focus on whether, on a given trial, the bandit with the maximum reward was chosen, which we will refer to as an advantageous choice. Average proportions of advantageous choices, by block (4 blocks of 50 trials each) and condition, are given in Figure 3. Choice behaviour was analysed with a generalized linear mixed-effects model, using a binomial distribution for the number of advantageous choices in each block. In addition to fixed effects for Block, Volatility, and Trend, subject-specific random intercepts were included. Note that this model is structurally similar to a repeated-measures ANOVA, but takes into account the non-normal distribution of the number of advantageous choices. This analysis showed a significant main effect of Block, $\chi^2(3) = 295.97$, $p < .001$. Averaging over conditions, the proportion of advantageous choices increased from block 1 to block 3, while there was a small decrease from block 3 to block 4. In addition, there was a significant Volatility by Block interaction, $\chi^2(3) = 148.13$, $p < .001$, as well as a significant Trend by Block interaction, $\chi^2(3) = 86.38$, $p < .001$. Post-hoc comparisons showed that in block 2, performance in the stable volatility conditions was significantly better than in the variable volatility conditions ($p = .019$), and performance in the no trend conditions was significantly better than in the trend conditions ($p = .004$). In block 3, the reverse was true, with performance better in the variable volatility conditions ($p < .001$) and in the trend conditions ($p = .029$). In the remaining blocks, there was no effect of Volatility or Trend. The effects of Volatility and Trend on performance are likely due to their effect on the discriminability between the arms in terms of their average rewards. For instance, while high volatility may hinder discrimination between the decks due to...
in the variable volatility conditions, $\chi^2(1) = 35.77$, $p < .001$, while there is no difference in the stable volatility conditions, $\chi^2(1) = 1.89$, $p = .17$.

Modelling exploration and exploitation

Switching between arms is only a rough measure of exploration, as one can switch arm because one believes it is now optimal (exploitation) or to gain more information about it (exploration). We therefore use computational modelling to gain more insight into explorative decisions. In all models considered here, $u(t)$, the utility of the reward $R(t)$ received on trial t, is assumed to be described through the value function of Prospect Theory (cf. Ahn et al., 2008):

$$u(t) = \begin{cases} R(t)^\alpha & \text{if } R(t) \geq 0 \\ -\lambda |R(t)|^\alpha & \text{if } R(t) < 0 \end{cases}$$

where the parameter $\alpha > 0$ determines the shape of the utility function: when $\alpha < 1$, the curve is concave for gains (risk aversion) and convex for losses (risk seeking). The parameter $\lambda \geq 0$ can account for loss aversion: when $\lambda > 1$, a loss of x points has a larger negative utility than a win of x points has a positive utility.

After receiving a reward on trial t, participants are assumed to update their expectancies $E_j(t+1)$ regarding the utility they will receive when choosing deck j on trial $t+1$. We consider three possible mechanisms through which these expectancies are updated: Bayesian updating, the delta rule, and the decay rule.

Bayesian updating This model-based learning strategy assumes the utility of arms is determined by a Gaussian process as in Equation 1. Optimal Bayesian inference regarding mean utilities is implemented by the Kalman filter:

$$E_j(t) = E_j(t-1) + \delta_j(t)K_j(t)\{u_j(t) - E_j(t-1)\} \quad (3)$$

where $\delta_j(t) = 1$ if deck j was chosen on trial t, and 0 otherwise. The “Kalman gain” term is computed as

$$K_j(t) = \frac{S_j(t-1) + \sigma^2_\zeta}{S_j(t-1) + \sigma^2_\zeta + \sigma^2_\xi}$$

where $S_j(t)$ is the variance of the posterior distribution of the mean utility, computed as

$$S_j(t) = S_j(t-1) + \sigma^2_\zeta + \delta_j(t)[1 - K_j(t)]|S_j(t-1) + \sigma^2_\xi| \quad (4)$$

Prior means and variances were initialized to $E_j(0) = 0$ and $S_j(0) = 1000$. For simplicity, we did not consider a model which learns possible trends or the level of volatility.

Delta rule A popular model-free alternative to Bayesian inference is the delta rule:

$$E_j(t) = E_j(t-1) + \delta_j(t)\eta[u_j(t) - E_j(t-1)]$$

Figure 3: Proportion of advantageous choices and switches by block (50 trials each) and condition.

large trial-by-trial variation in average rewards, when volatility reduces again in block 3, the arms are actually more discriminable than in the stable volatility conditions, as the high volatility has pushed the means further apart.

Switching

Average switching proportions, by block and condition, are given in Figure 3. Switching behaviour was analysed with a similar generalized linear mixed-effects model as for the advantageous choices. This analysis showed a significant main effect of Block, $\chi^2(3) = 634.75$, $p < .001$, as well as a Volatility by Block interaction, $\chi^2(3) = 26.44$, $p < .001$, a Trend by Block interaction, $\chi^2(3) = 44.15$, $p < .001$, and a three-way interaction between Volatility, Trend, and Block, $\chi^2(3) = 16.12$, $p = .001$. No other effects were significant. Post-hoc analysis did not show any significant differences between pairs of conditions within each block. Comparisons of consecutive blocks within each condition showed that in the SN condition, there was a significant decrease in switching from block 2 to 3. In the VN condition, switching decreased from block 1 to 2 and from block 2 and 3, while there was an increase from block 3 to 4. In the ST and VT condition there was a decrease in switching from block 1 to 2 and from block 2 to 3. For all these comparisons, $p < .001$. As for the number of advantageous choices, this analysis indicates that there were no general effects of volatility or trend on switching behaviour. However, these manipulations did affect how switching behaviour developed during the task.

Of particular interest is whether participants in the variable volatility conditions show increased exploration in the blocks with high volatility. Focussing on switching behaviour in block 3 and 4, we see an increase from block 3 to block 4
The main difference between this rule and Bayesian updating (Equation 3) is that the former uses a fixed learning rate \(0 \leq \eta \leq 1 \), while the “learning rate” \(K_j(t) \) of the latter depends on the current level of uncertainty.

Decay rule While the two previous learning rules assume only the expectancy of the currently chosen deck is updated, according to the (model-free) decay rule (e.g. Ahn et al., 2008), expectancies of unchosen decks decay towards 0:

\[
E_j(t) = \eta E_g(t-1) + \delta_j(t) u_j(t)
\]

where the decay parameter \(0 \leq \eta \leq 1 \).

Choice rules Choice rules describe how the expectancies are used to make a choice \(C(t) \) between the arms. We consider six choice rules, the “probability of maximum utility” rule described in the introduction, and three more heuristic rules popular in reinforcement learning (cf. Daw et al., 2006).

\(\varepsilon \)-greedy This choice rule exploits the arm with the maximum expectancy with probability \(1 - \varepsilon \), and with probability \(\varepsilon \) chooses randomly from the remaining bandits:

\[
P(C(t) = j) = \begin{cases}
1 - \varepsilon & \text{if } E_j(t) > E_k(t), \quad \forall k \neq j \\
\varepsilon/3 & \text{otherwise}
\end{cases}
\]

Softmax (SM) The softmax rule can vary gradually between a pure exploitation (maximisation) and pure exploration through an inverse temperature parameter \(\theta(t) \):

\[
P(C(t) = j) = \frac{\exp\{\theta(t) E_j(t)\}}{\sum_k \exp\{\theta(t) E_k(t)\}}
\]

The temperature is constant in the fixed softmax (SMF) models: \(\theta(t) = \theta_0 \), with \(\theta_0 \geq 0 \). In the dynamic softmax (SMF) models, the temperature can increase or decrease over trials according to the schedule \(\theta(t) = [t/10]^\theta_0 \). In this case, \(\theta_0 \) can take values along the whole real line.

Softmax with exploration bonus (SMEB) Exploration can be increased by adding an “exploration bonus” term, \(\beta_j(t) \), to the Softmax rule:

\[
P(C(t) = j) = \frac{\exp\{\theta(t) E_j(t) + \beta_j(t)\}}{\sum_k \exp\{\theta(t) E_k(t) + \beta_k(t)\}}
\]

The exploration bonus increases with uncertainty. For the Kalman filter model, we use the standard deviation of the prior distribution of mean utility: \(\beta_j(t) = \beta_0 \sqrt{S_j(t) + \bar{\sigma}_\xi^2} \), with \(\beta_0 > 0 \) and \(S_j(t) \) computed as in Equation 4. As the Delta and Decay models do not provide measures of uncertainty, we used a simple heuristic according to which the uncertainty increases linearly with the number of trials since a particular arm was last observed: \(\beta_j(t) = \beta_0 [t - T_j] \), where \(T_j \) is the last trial before the current trial \(t \) in which deck \(j \) was chosen.

Probability of maximum utility (PMU) The probability that an arm provides a higher utility than any of the other arms can be computed as the probability that all pairwise differences between the reward of an arm and the rewards of the other arms are greater than or equal to 0. For the current task and generative model in Equation 1, there are three such pairwise differences scores for each arm which follow a multivariate Normal distribution. Hence, the probability that arm \(j \) is chosen on trial \(t \) is

\[
P(C(t) = j) = P(\forall k : u_j(t) \geq u_k(t))
\]

where \(\Phi \) is the multivariate Normal density function with mean vector \(\mathbf{M}_j(t) = \mathbf{A}_j \mathbf{E}(t) \) and covariance matrix \(\mathbf{H}_j(t) = \mathbf{A}_j \text{diag}(S(t) + \bar{\sigma}_\xi^2) \mathbf{A}_j^T \), where \(\text{diag}(S(t) + \bar{\sigma}_\xi^2) \) is a diagonal matrix with values \(S_j(t) + \bar{\sigma}_\xi^2 \) and \(\bar{\sigma}_\xi^2 \) the error variance assumed by the learner. The matrix \(\mathbf{A}_j \) computes the pairwise differences between deck \(j \) and the other decks. E.g.,

\[
\begin{pmatrix} 1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & 0 & -1 \\
\end{pmatrix}
\]

Model estimation and inference For each individual participant, model parameters were estimated by maximum likelihood using the Nelder-Mead simplex algorithm implemented in the \texttt{optim} function in R. To evaluate the fit of the models, we computed the Akaike (AIC) and Schwartz (BIC) information criteria, reported as difference scores between a null model\(^1\) and the model of interest (cf. Ahn et al., 2008). For these difference scores, negative values of \(\Delta(AIC) \) and \(\Delta(BIC) \) indicate that the model fitted worse than the null model, while increasing positive values indicate better fit. Finally, we computed Akaike and Schwarz weights, \(w(AIC) \) and \(w(BIC) \) (e.g., Wagenmakers & Farrell, 2004). Schwarz (BIC) weights approximate the posterior probability of the models (assuming equal prior probability). Similarly, Akaike (AIC) weights can be interpreted as reflecting the probability that, given the observed data, a candidate model is the best model in the AIC sense (that it minimizes the Kullback-Leibler discrepancy) in the set of models under consideration.

Modelling results Table 1 contains the fit measures for all models. Focussing first on the AIC and BIC difference scores, we see that on average the best fitting model is decay learning with fixed softmax choice (Decay-SMF). In general, the Decay rule always performs better (on average) than the other two learning

\(^1\)The null model used was a simple multinomial model in which, on each trial, the deck choice is assumed to be an independent random draw from a multinomial distribution. The probabilities of this distribution were estimated for each participant and the null model has three parameters (the probability for three bandits; the probability of other bandit deck follows immediately).
rules. This is a common finding which is likely due to the ability of this rule to capture people’s tendency to repeat previous choices (Ahn et al., 2008). While the delta learning rule performs on average a little better than Bayesian updating with the Kalman filter, the differences between these learning rules are less marked. Out of the different choice rules, the ε-greedy rule clearly performs the worst, while the fixed Softmax (SMf) rule performs best for each learning rule.

When we look at the number of participants who are best fit by each model, a different picture arises: Bayesian updating with the probability of maximum utility choice rule (Bayesian-PMU) fits more participants best than any of the other models. This is also the model with the highest average Akaike and Schwarz weights. As such, the evidence for this model is more marked than the evidence for the other models. The discrepancy between the results for the AIC and BIC difference scores on the one hand, and the Akaike and Schwarz weights on the other, is due to the fact that when the Bayesian-PMU model fits best, it fits decidedly better than the other models, resulting in weights close to 1. For participants with a different best fitting model, the differences between the AIC and BIC values of the next best-fitting models are generally smaller, resulting in less extreme weights. In conclusion, there is strong evidence that uncertainty regarding an arm’s ability of this set of competing models. This supports previous findings by Knox et al. (2012) in a simpler task, but contrasts with the findings of Daw et al. (2006) who found no influence of uncertainty in a task similar to the one used here. Apparently, uncertainty affects decisions in a more refined way than in the model of Daw et al., through its effect on predicted distributions of the utility associated with the options.

Acknowledgements

We thank James Carragher, Belle Cartwright, Melvin Wan and Tiffany Yung for their assistance in collecting the data.

References

Table 1: Modelling results. Values of ∆(·) and w(·) are averages and the standard deviation is given in parentheses. Values of n(·) are the total number of participants best fit by the corresponding model.

<table>
<thead>
<tr>
<th>Learning</th>
<th>Choice</th>
<th>∆(AIC)</th>
<th>w(AIC)</th>
<th>n(AIC)</th>
<th>∆(BIC)</th>
<th>w(BIC)</th>
<th>n(BIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian</td>
<td>ε-greedy</td>
<td>190.39 (95.72)</td>
<td>0 (0)</td>
<td>0</td>
<td>183.79 (95.72)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SMf</td>
<td>237.37 (90.07)</td>
<td>0.04 (0.09)</td>
<td>2</td>
<td>230.78 (90.07)</td>
<td>0.01 (0.03)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SMf</td>
<td>236.20 (90.09)</td>
<td>0.06 (0.17)</td>
<td>2</td>
<td>229.62 (90.09)</td>
<td>0.03 (0.13)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SMEB</td>
<td>226.71 (94.8)</td>
<td>0.01 (0.02)</td>
<td>0</td>
<td>216.81 (94.8)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PMU</td>
<td>223.43 (107.36)</td>
<td>0.25 (0.4)</td>
<td>21</td>
<td>220.13 (107.36)</td>
<td>0.26 (0.41)</td>
<td>21</td>
</tr>
<tr>
<td>Delta</td>
<td>ε-greedy</td>
<td>192.81 (94.36)</td>
<td>0 (0)</td>
<td>0</td>
<td>189.51 (94.36)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SMf</td>
<td>237.5 (91.7)</td>
<td>0.06 (0.13)</td>
<td>6</td>
<td>234.2 (91.7)</td>
<td>0.09 (0.2)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SMEB</td>
<td>236.68 (91.4)</td>
<td>0.11 (0.24)</td>
<td>12</td>
<td>233.38 (91.4)</td>
<td>0.15 (0.3)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Delta</td>
<td>233.75 (91.7)</td>
<td>0.06 (0.13)</td>
<td>6</td>
<td>234.2 (91.7)</td>
<td>0.09 (0.2)</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SMEB</td>
<td>236.68 (91.4)</td>
<td>0.11 (0.24)</td>
<td>12</td>
<td>233.38 (91.4)</td>
<td>0.15 (0.3)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>SMEB</td>
<td>240.5 (91.99)</td>
<td>0.05 (0.08)</td>
<td>0</td>
<td>233.9 (91.99)</td>
<td>0.01 (0.02)</td>
<td>0</td>
</tr>
</tbody>
</table>