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Abstract

A recent approach based on Bayesian inverse planning for the
“theory of mind” has shown good performance in modeling
human cognition. However, perfect inverse planning differs
from human cognition during one kind of complex tasks due
to human bounded rationality. One example is an environment
in which there are many available plans for achieving a specific
goal. We propose a “plan predictability oriented model” as a
model of inferring other peoples’ goals in complex environ-
ments. This model adds the bias that people prefer predictable
plans. This bias is calculated with simple plan prediction. We
tested this model with a behavioral experiment in which hu-
mans observed the partial path of goal-directed actions. Our
model had a higher correlation with human inference. We also
confirmed the robustness of our model with complex tasks and
determined that it can be improved by taking account of indi-
vidual differences in “bounded rationality”.
Keywords: Bayesian Modeling; Theory of Mind; Hierarchical
Model; Bounded Rationality.

Introduction
People have a cognitive mechanism called the “theory of
mind” that can estimate peoples purposes and plans through
observation from infancy (Woodward, Sommerville, & Gua-
jardo, 2001). Trials for using this theory of mind as a com-
putational model are of great interest in the cognitive sci-
ence arena, and there has been a lot of research about this
(Goldman, 2012) (Paul & Cassimatis, 2006).

A recent approach based on Bayesian inverse planning has
been recognized as a method for modeling the theory of mind
(Baker, Saxe, & Tenenbaum, 2009). In this approach, peo-
ple are modeled as agents who are rational (Dennett, 1987).
When a goal is given, rational agents behave rationally to
achieve it. The posterior probability of a particular goal given
observed behavior is calculated by the product of the prior
probability of the goal and the likely behavior of the rational
agent given the goal.

This approach can be applied to all problems in which ra-
tional agents can be designed. There are many examples of
functions used to estimate other peoples’ intentions on the ba-
sis of this approach, such as other peoples’ intermediate goals
(Nakahashi, Baker, & Tenenbaum, 2016), preferences toward
navigation (Jara-ettinger, Schulz, & Tenenbaum, 2014), and
so on.

However, this approach may differ from human perception
in some complex situations.

(c) + + =

(a) Target = Green (b) Target = Orange??

Figure 1: Complex environment in which Bayesian inverse
planning is mistaken for model human inference. Bayesian
inverse planning infers green door as robots goal in (a), (b).
Humans may infer orange door in (b). (c) is rule for assem-
bling keys.

Figure 1 is one example of such a problem. In Figure 1 (a),
the robot wants to open and go through one of the doors. It
wants to go through either the orange door or the green door,
and the doors require a key of the same color to be opened. To
open a door, the robot assembles the required key. To do so, it
is necessary to collect three types of parts as shown in Figure
1 (c). In 1 (a), the robot moved as indicated by the purple
line. Which door is the robot about to open, the orange or
the green one? In this case, many people will answer with
the green one. This is because, if the robot wanted to open
the orange door, it would collect the three parts shown on the
upper half and open the orange door. How about the example
in 1 (b)? Perfectly rational thought leads to the conclusion
that the correct answer is green, as in 1 (a). The reason is that
there is a shorter path to collect the orange key parts than the
current robot path. For this reason, the inference formed on
the basis of the Bayesian inverse planning model will be that
the robot wants to go through the green door in this example.
However, we often infer that the robot wants to go through
the orange door when looking at Figure 1 (b).

This difference is due to the fact that observers cannot com-
pletely recognize the rationality of the actors when a problem
is complicated. In the above example, there are many possible
plans to achieve one goal, but it is difficult to evaluate all of
them. On the basis of this reason, human inference is affected
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by the bias towards “easy to predict” plans. This means that
humans only consider a few plans that can be easily predicted.
This is an example of bounded rationality (Simon, 1957).

In this paper, we propose a novel model called the “plan
predictability oriented model” for modeling human inference
with plan predictability bias. We aim to build a more adequate
model of human inference in problem settings in which there
are many plans available to achieve one goal, as shown in the
example. This model is based on Bayesian inverse planning,
but we allowed for bias in plan predictability in the inference
phase. We perform calculation with the likelihood of a future
plan from observed behavior like plan prediction (Charniak
& Goldman, 1993), and we use the likelihood as our plan
predictability bias. We use simple soft-max likelihood base
plan prediction.

To show the advantages of our proposed model, we de-
signed a scenario called “item creating” and carried out sub-
ject experiments with it. In this scenario, there is an agent
that collects parts to create a specific item. Participants ob-
serve part of the behavior of the agent and are then asked to
estimate the item that the agent wants to create on the basis
of the observation. We compared the correlation between this
participants data and both the inferences formed on the basis
of the full inverse planning model and our model. The re-
sult was that our model had a better correlation with human
inference than did the full inverse planning model. Addition-
ally, we confirmed that a higher task complexity made the
accuracy of the full inverse planning model worse, but our
model was not affected. We also show that there are individ-
ual differences regarding the bias and that we can improve
our model by considering individual differences.

We wrote a problem setting, detailed the full inverse plan-
ning model and plan predictability oriented model, wrote the
details and results of evaluations with the “item creating” sce-
nario, discussed and summarized our approach.

Computational Model
Preliminary
Notation and Problem Setting
We denote the set of people’s goals as G and the set of actions
as A . Action sequences are represented as a ∈ A+, and the
set of all plans to achieve goal g ∈ G are represented as Pg.
Since plans are a kind of sequence, Pg ⊂ A+.

Model of Human Rationality
We use Boltzmann noisy rationality as the rationality of ac-
tion for our model. In the definition for Boltzmann noisy ra-
tionality, P(a|g) is the probability that an agent executes a
for g in accordance with the Boltzmann distribution of the
“value” of a for achieving g. Equation 1 is the definition of
the probability. β is the temperature parameter of the Boltz-
mann distribution to define rationality.

P(g|a) =
exp(βQg(a))

∑g′∈G exp(βQg′(a))
(1)

Here, Qg(a) corresponds to the value function in terms of
MDP planning or reinforcement learning which means ex-
pected rewards after executing a under g.

Modeling and Calculation
Problem Objective
The objective of our modeling is the posterior probability that
the goal of others is g when observing others action sequence
a.

P(g|a) (2)

Calculating Full Inverse Planning Model In the inverse
planning approach, we reverse the variable dependency in Eq.
2 by using a Bayesian theorem.

P(g|a) ∝ P(a|g)P(g) (3)

We assume no prior knowledge about another persons goal.
In other words, we assume P(g) as a uniform distribution.
Therefore, we can ignore P(g) from Eq. 3. To calculate this,
we assume that a human creates a plan in advance and exe-
cutes their actions according to the plan. Thus, we can factor-
ize P(a|g) into the probability of a plan to be considered as
one achieving g and the probability of executing a under the
plan. The following equation is obtained when summarizing
this factored probability for all available plans.

P(a|g) ∝ ∑
p∈Pg

P(a|p)P(p|g) (4)

P(a|p) and P(p|g) are calculated using Boltzmann noisy
rationality.

P(a|p) =
exp(βQp,g(a))

∑p′∈Pg exp(βQp′,g(a))

P(p|g) =
exp(βQg(p))

∑g′∈G exp(βQg′(p))
(5)

Note, that p is a plan for achieving a specific goal. In other
words, if a plan decided, the corresponding goal also comes
uniquely. Thus we can treat Qp,g(a) as Qp(a)

Calculating Plan Predictability Oriented Model In the
plan predictability oriented model, Eq. 3 is the same; how-
ever, the way of calculating of P(a|g) is made different in
order to integrate the bias that people prefer predicable plans.
The predictability of a plan is the probability that a plan is ex-
ecuting from observing action sequences, thus that is p(p|a).
We use this instead of P(a|p); thus, we obtain the following
equation.

P(a|g) ∝ ∑
p∈Pg

P(p|a)P(p|g) (6)
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Figure 2: Graphical model of P(a|g) for (a) full inverse plan-
ning model and (b) plan predictability oriented model.

Here, we use simple Boltzmann noisy rationality for
P(p|a) as follows.

P(p|a) =
exp(βQp(a))

∑a∈A+ exp(βQp(a))
(7)

Comparison of Full Inverse Planning Model and Plan
Predictability Oriented Model Figure 2 shows the differ-
ence in graphical models for P(g|a). As shown Figure 2 (a),
in the full inverse planning model, humans assume that others
decide their plan in advance and then act according to it. This
is the natural process of human planning. In comparison, as
Figure 2 (b), in the plan predictability oriented model, action
sequence affect plans. This means that humans may change
their plans depending on their actions, and this is unintuitive.
We assume that humans cannot calculate the goals of others
on the basis of full inverse planning model because the model
needs all plans of Pg, and this is almost impossible for hu-
mans in complex situations. Humans consider several plans
to estimate others’ goal and they tend to consider plans that
they can predict easily. This is the reason that humans tend
to think that others take actions according to such unintuitive
process and this is plan predictability bias.

Experiment
To compare the full inverse planning model and the plan pre-
dictability oriented model with human cognition, we did sub-
ject experiments. For these experiments, we considered “item
creating” scenarios.

In Figure 3, the upper figure is an example of the scenario.
The environment in this scenario is a kind of grid world.
There is one agent and several parts of items in either grid,
and there is not more than one part in the same grid. Here,
the agent is represented by a purple hexagon. There are four
types of parts (square, triangle, small rectangle, circle), and
there are two to three colors for each type.

The goal of the agent is to create a “goal product” that an
agent wants to create. The “goal product” consists of two to
four types of parts with only one type used one time for each
product (square, triangle), (square, triangle, small rectangle),
(square, triangle, small rectangle, circle). The agent moves to

(a) (b) (c) (d)

Figure 3: Example of “item creating” scenarios [for task (4,
2, 2)]. Location of agent is represented as purple hexagon;
other red or blue shapes represent parts. Purple line is partial
agent path. This means agent got green rectangle and blue
triangle. Participants selected and evaluated their inferences
toward “goal product” that agent wanted to create between
lower four candidates.

Full Inverse Planning Model 0.765 (p� 0.0001)
Plan Predictability Oriented Model 0.916 (p� 0.0001)

Table 1: Pearson correlation between full Bayesian model
and plan prediction oriented model with human inferences

collect the parts that are necessary for its own “goal product.”
The agent has the priority to collect the items. The agent col-
lects the parts in the order of square, triangle, small rectangle,
circle. There are multiple objects of the same color and the
same type in the environment; thus, there is a more than one
combination of objects for generating one object.

Participants We recruited participants for this study using
Yahoo! Cloud Sourcing. Valid participants were 47 adults
located in Japan (13 male, 29 female, 5 unknown). The mean
age was 39 years old.

Procedure of Experiment Experiments were conducted on
the Web via a browser application we made. Subjects were
instructed on the rules of agent behavior and then underwent
a confirmation test to check their degree of understanding.
In this test, participants who were judged to not understand
the rules were given the instructions again. The participants
who passed the confirmation test entered the actual experi-
ment phase. In this phase, participants saw the environment,
part of the agent’s movement path for collecting parts, and
four target candidates for the agent’s “goal product” simulta-
neously. The subjects selected one that they considered most
likely to be the agent’s “goal product” from the candidates.
Also, participants scored the degree of likelihood for which
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Figure 4: Inference of human and computational models for
task (4, 2, 2)
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Figure 5: Pearson correlation between full inverse planning
model and plan predictability oriented model with human in-
ferences for each task

they estimated a candidate as being the agents “goal product”
for all the candidates. We adopted a seven-degree score for
the evaluation.

Before analyzing the participants’ results, we excluded the
results of the participants who were invalidated. We defined
invalid participants as participants who gave the same evalu-
ation score to all candidates or did not give the highest evalu-
ation score to the selected candidate as the most likely candi-
date.

Stimuli We prepared nine stimuli (tasks) with different task
complexities. There are three variables that affect task com-
plexity. k is the number of types of parts included in the
agent’s “goal product,” n is the number of types of parts in-
cluded in the agent’s path, and c is the number of colors of
parts that have not been collected by the agent yet. We de-
signed nine combinations of complexity for variables k, n,
and c. There were (2, 1, 2), (3, 1, 2), (3, 2, 2), (4, 1, 2), (4, 2,
2), (4, 3, 2), (2, 1, 3), (3, 2, 3) and (4, 3, 3). we made a stim-
ulus corresponding to each combination. In task c = 3, the
only type of part that was not yet collected by the agent had
three colors. The example in Figure 3 is task (4, 2, 2), and the

Full Inverse Planning Model -0.714 (p = 0.03)
Plan Predictability Oriented Model 0.116 (p = 0.76)

Table 2: Pearson correlation of “Pearson correlation of hu-
man inference with each models” with task complexity factor
k−n

purple line in the upper figure corresponds to the movement
of the agent.

We designed the placement of parts within the environment
and the agents path within the task to make the inference of
the most likely “goal product” different with the full inverse
planning model and plan predictability oriented model. We
chose four candidates according to four policies: the most
likely candidate for the full inverse planning model, the most
likely candidate for the plan predictability oriented model,
and the candidate that had a low probability for both mod-
els. The lower figures in Figure 3 show example candidates
for the agent’s “goal product” for task (4, 2, 2).
Model In the “item creating” scenario, G corresponds to a
set of “goal products”, and A corresponds to a set of individ-
ual parts. Pg is a set of all available combinations of parts to
build a “goal product” g. Since there is a more than one com-
bination of objects for generating one object, ∀g, |Pg| > 1.
Here, we defined Qg(p) as −cost(p). cost(p) is the shortest
path length of p. Qp(a) is −cost(p− a). p− a means the
remaining plan of p after a. We set rational parameters as
β1 = 0.3, β2 = 0.3, β3 = 0.5.
Result We evaluated the full inverse planning model and
plan predictability oriented model with a comparative exper-
iment by comparing participant scores. For comparison, we
made a human score vector and model probability vector. The
human score vector was a vector that consisted of the partici-
pants’ scores serialized over all results (thus, the length of the
vector was 36) without any normalization. We used the aver-
age vector of human score vectors for all valid participants.
To make the model probability vector, we extracted probabili-
ties of candidates for each task and serialized them (the length
of the vector was also 36). Table 1 is a Pearson correlation of
the averaged human score vector between model probability
vectors for both models. The results show that the plan pre-
dictability oriented model had a much better correlation with
human inference. Figure 4 is the specific result for task (4,
2, 2). Blue and green are the probability calculated by each
computational model, and the red bar is the average of the
participants’ scores. This figure also shows a good correla-
tion of human inference with the plan predictability oriented
model. We also executed a significance test. First, we cal-
culated the Pearson correlation between human score vectors
and model probability vectors for all valid participants. Thus,
we obtained two sets of Pearson correlations for the two mod-
els. Then, we executed t-tests on the sets. The p-value was
0.03 (< 0.05). Thus, we confirmed that there was a significant
difference in correlation between the two models.
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Figure 6: Scatter plot of Pearson correlation between full in-
verse planning model and plan predictability oriented model
with human inference for each participant

Relation to task complexity Next, we calculated the Pear-
son correlation of human inference with both models for each
task. We made an averaged human score vector and model
probability vectors for each task and calculated the Pearson
correlation by using these vectors. Figure 5 is the result. First,
the results show that the plan predictability oriented model
had a much better correlation with human inference for all of
the tasks. The full inverse planning model had a low correla-
tion with human inference for tasks for (3-1-2), (4-1-2), and
(4-2-2) in particular. The common factor in these tasks was
that the remaining number of types of parts, which is repre-
sented as k−n, was more than one.

Table. 2 is the Pearson correlation of “Pearson correlation
of human inference with each model” with k− n. In other
words, it is the correlation between the values of Figure 5
and k− n. The full inverse planning model had a strongly
negative correlation with k−n. k−n was strongly related to
the future available paths of the agent. This means that the full
inverse planning model was not effective for tasks that had
many future available paths. This matches with the intuition
that humans may think bounded-rationally, not full-rationally,
in complex situations. The plan predictability oriented model
did not have such negative correlation with k−n. This means
that this model was not affected by task complexity.

Confirmation of individual difference We calculated the
Pearson correlation of human inference with both models for
each participant. Figure 6 is a scatter plot of the results. The
dotted line on the plot shows the boundary where the correla-
tion between both models was equal. Most of the participants
are on the upper left of the plot. This means that most of the
participants’ inference has a good correlation with the plan
predictability oriented model. However, some participants on
the lower right of the plot means that the plan predictability
oriented model cannot model for these participants. The par-
ticipants could rationally recognize other peoples intentions
completely in this experiment, so they had a good correlation
with the full inverse planning model. These results suggest
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Figure 7: Histograms for the number of participants for each
best predictability bias

Full Inverse Planning Model 0.513
Plan Predictability Oriented Model (same) 0.638

Plan Predictability Oriented Model (individual) 0.738

Table 3: Average Pearson correlation of human inference be-
tween models for each participant

that there are individual differences in peoples bounded ratio-
nality.

We made multiple plan predictability oriented models that
had different β3. β3 is the parameter for plan predictability
bias. The range of β3 was from 0.0 to 1.0 in increments of
0.1. Figure 7 is a histogram of the number of participants
who had the best correlation with the plan predictability ori-
ented model with β3. It shows that many of the participants
had a strong bias, but some had a small bias or no bias. Ta-
ble 3 is the average Pearson correlation for the result of each
participants with the models. Here, (same) means that we
used the same value for β3, and (individual) means we used
the best value for β3 for individual participants. The indi-
vidual setting had a higher correlation with humans than the
same correlation. This suggests that adaptating the bias can
improve our model.

Discussion
Essentially, full inverse planning model differs from human
cognition in situations in which there is a difference in the
rationality of the actor and the observer. Since forward plan-
ning for taking action towards a particular goal is generally
easier than inverse planning to infer cause from actions ob-
served, these situations might always happen. Therefore, we
think that the model is useful for many situations. In addi-
tion, our computational model is based on the inverse plan-
ning model and simple plan prediction, so it has the potential
of being adapted to various situations. However, we showed
the actual effectiveness only under the “item creating” sce-
nario. This scenario is one example environment that has a
grid geometric rationality and sequential planning. Explicit
sequential planning is the most basic planning, and a lot of
human planning is based on sequential planning. The grid
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geometric rationality and sequential planning are often used
in the theory of mind (Baker, Jara-Ettinger, Saxe, & Tenen-
baum, 2017). Therefore, we think that our model can be used
in broad situations.

Understanding how humans infer others’ intentions is use-
ful for considering good actions when corroborating with oth-
ers. In the cognitive science area, there is research on how
humans behave when they want to communicate their goal
or purpose (Shafto, Goodman, & Griffiths, 2014). In the ar-
tificial intelligence and robotics areas, research on collabo-
rative planning is more popular and important. For exam-
ple,“legibility” is proposed (Dragan & Srinivasa, 2014). This
is a measure of human expectation toward robots’ intentions
or goals as based on the behavior of robots. There are also
works on using “legibility” for planning (Fisac et al., 2017).

The expansion of our model for larger and more complex
tasks is a very interesting direction for our future work. In-
troducing hierarchical planning is a promising approach. Our
model can be considered as one type of hierarchical model-
ing in which the inference of plans is regarded as an inter-
mediate layer. The hierarchical predictive coding framework
(Blokpoel, Kwisthout, & van Rooij, 2012) is one example
of hierarchical modeling for human cognition. This model
has multiple inference layers with different abstraction levels,
and execute step-by-step inference by using MAP estimation.
Similarly, our model can be expanded with multiple planning
layers. Determining whether such a model is better for mod-
eling human cognition would be an interesting next research
step.

Deeper analysis of individual rationality is also interesting.
We just demonstrated that human rationality differs from per-
son to person. However, there might be some factors that de-
cide the degree of bias. Seeking such factors and improving
our model by implementing them would be a valuable study.

Conclusion
In this paper, we proposed a novel computational model
called the “plan predictability oriented model” to infer the
goals of others through their behavior. This model imple-
ments bounded rationality for complex tasks that have many
options for one purpose. We confirmed that our model has a
better correlation with human inference than the full inverse
planning model via a subject experiment using the item cre-
ating scenario. We also confirmed that the full inverse plan-
ning model becomes progressively worse with the increasing
complexity of tasks, while our model remains unaffected by
changes in complexity. This suggests that our model has ro-
bustness for complex tasks. We also confirmed the existence
of individual differences in bounded rationality and suggested
that we could improve our model by introducing individual-
ized bounded rationality.

Although there are many limitations and much room for
improvement, the model is valuable as one example of the
theory of mind with bounded rationality. We are confident
that this result can contribute to research on human cognition

and the development of engineering applications under cog-
nitive science.

Acknowledgements
This study was partially supported by JSPS KAKENHI ”Cog-
nitive Interaction Design” (No.JP26118005).

References
Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B.

(2017). Rational quantitative attribution of beliefs, desires
and percepts in human mentalizing. Nature Human Be-
haviour, 1(4), 0064.

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action
understanding as inverse planning. In Cognition (pp. 329–
349). Elsevier B.V.

Blokpoel, M., Kwisthout, J., & van Rooij, I. (2012). When
can predictive brains be truly Bayesian? Frontiers in Psy-
chology, 3(NOV), 1–3.

Charniak, E., & Goldman, R. P. (1993). A Bayesian model
of plan recognition. Artificial Intelligence, 64(1), 53–79.

Dennett, D. C. (1987). The intentional stance. Cambridge,
MA: MIT Press.

Dragan, A. D., & Srinivasa, S. (2014). Integrating human ob-
server inferences into robot motion planning. Autonomous
Robots, 37.4, 351–368.

Fisac, J. F., Gataes, M. A., Hamrick, J. B., Hedrick, K.,
Liu, C., Hadfield-Menell, D., . . . Dragan, A. D. (2017).
Pragmatic-Pedagogic Value Alignment. In Proceedings of
the international symposium on robotics research.

Goldman, A. I. (2012). Theory of mind. Oxford: Oxford
University Press.

Jara-ettinger, J., Schulz, L. E., & Tenenbaum, J. B. (2014).
The naı̈ve utility calculus : Joint inferences about the costs
and rewards of actions The naı̈ve utility calculus. In Pro-
ceedings of the 36th annual conference of the cognitive sci-
ence society (pp. 974–979).

Nakahashi, R., Baker, C. L., & Tenenbaum, J. B. (2016).
Modeling human understanding of complex intentional ac-
tion with a bayesian nonparametric subgoal model. In Pro-
ceedings or 30th conference on artificial intelligence (pp.
3754–3760).

Paul, B., & Cassimatis, N. (2006). Developmental accounts
of theory-of-mind acquisition: Achieving clarity via com-
putational cognitive modeling. In Proceedings of the 28th
the annual meeting of the cognitive science society.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A ra-
tional account of pedagogical reasoning: Teaching by, and
learning from, examples. Cognitive Psychology, 71, 55–
89.

Simon, H. A. (1957). Models of man, social and rational:
Mathematical essays on rational human behavior. New
York: Wiley.

Woodward, A. L., Sommerville, J. A., & Guajardo, J. J.
(2001). How infants make sense of intentional action. In-
tentions and intentionality: Foundations of social cogni-
tion., 149–169.

2152


