Dynamic Field Theory: Conceptual Foundations and Applications in Cognitive and Developmental Science


Dynamical Systems thinking has been influential in the way psychologists, cognitive scientists, and neuroscientists think about sensori-motor behavior and its development. The initial emphasis on motor behavior was expanded when the concept of dynamic activation fields provided access to embodied cognition. Dynamical Field Theory offers a framework for thinking about representation-in-the-moment that is firmly grounded in both Dynamical Systems thinking and neurophysiology. Dynamic Neural Fields are formalizations of how neural populations represent the continuous dimensions that characterize perceptual features, movements, and cognitive decisions. Neural fields evolve dynamically under the influence of inputs as well as strong neuronal interaction, generating elementary forms of cognition through dynamical instabilities. The concepts of DFT establish links between brain and behavior, helping to define experimental paradigms in which behavioral signatures of specific neural mechanisms can be observed. These paradigms can be modeled with Dynamic Neural Fields, deriving testable predictions and providing quantitative accounts of behavior.

Back to Table of Contents