Going to Extremes: The influence of unsupervised categories on the mental caricaturization of faces and asymmetries in perceptual discrimination

Abstract

Recent re-analysis of traditional Categorical Perception (CP) effects show that the advantage for between category judgments may be due to asymmetries of within-category judgments (Hanley & Roberson, 2011). This has led to the hypothesis that labels cause CP effects via these asymmetries due to category label uncertainty near the category boundary. In Experiment 1 we demonstrate that these “within-category” asymmetries exist before category training begins. Category learning does increase the within-category asymmetry on a category relevant dimension but equally on an irrelevant dimension. Experiment 2 replicates the asymmetry found in Experiment 1 without training and shows that it does not increase with additional exposure in the absence of category training. We conclude that the within-category asymmetry may be a result of unsupervised learning of stimulus clusters that emphasize extreme instances and that category training increases this caricaturization of stimulus representations.


Back to Table of Contents