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Abstract

This paper presents results from the first rational model of eye
movement control in reading to make predictions for the full
range of the eye movement record. The model identifies the
text through Bayesian inference and makes eye movement de-
cisions to maximize the efficiency of text identification, go-
ing beyond leading approaches which select model parame-
ters to maximize the fit to human data. Two simulations with
the model demonstrate that it can produce effects of word pre-
dictability and frequency on eye movements in reading similar
to those produced by humans, providing evidence that many
properties of human reading behavior may be understood as
following from the nature of efficient text identification.

Keywords: eye movements; reading; rational analysis; com-
putational modeling

Introduction

During reading, comprehenders must decide when and where
to move their eyes 3—4 times every second. Over the past
decades, it has been demonstrated that comprehenders make
these rapid, fine-grained decisions by combining information
from a range of sources including visual input, the motor sys-
tem, and linguistic knowledge (for reviews see Rayner, 1998,
2009), making reading one of the most complex learned tasks
that humans face every day. Gaining a better understanding
of this process promises to yield insights about how readers
deploy linguistic knowledge for real-time comprehension as
well as about how humans learn to perform complex tasks
more generally. In this paper, we present the first rational
model of eye movement control in reading that makes pre-
dictions for the full range of the eye movement record. We
model readers as performing Bayesian inference on the iden-
tity of the text, combining their probabilistic language knowl-
edge (the prior) with noisy perceptual input about the text (the
likelihood) to form and repeatedly update a posterior distribu-
tion over the possible text identities. The model uses a param-
eterized behavior policy for determining when and where to
move the eyes, which is sensitive to the posterior distribu-
tion over the text, and with parameters selected to optimize
identification efficiency. We evaluate the model by examin-
ing the effects it produces for two linguistic variables: word
frequency and predictability. We present the results of two
simulations showing that the model produces effects of these
variables similar to those of humans, across four different eye
movement measures reflecting both the locations and dura-
tions of fixations. The success of the model in deriving these
effects from principles of probabilistic inference and rational
action suggests that many aspects of human reading behav-
ior may be profitably understood as properties of the set of
efficient solutions to the problem of reading.

This model goes beyond leading models of eye movement
control in reading such as E-Z Reader (Reichle, Rayner, &
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Pollatsek, 2003) and SWIFT (Engbert, Nuthmann, Richter,
& Kliegl, 2005) in two ways. First, while those models se-
lect parameters to maximize the fit to human data, the current
work selects parameters to optimize the efficiency of read-
ing, here characterized as rapid and accurate identification of
the contents of the text. To the extent that the model behavior
reproduces effects seen in human data, then, it enables un-
derstanding those effects as resulting from the properties of
efficient solutions to the task. Second, the current work in-
cludes a model of the process of identification from visual
input, and in so doing derives effects of linguistic variables
(such as word frequency and predictability) as resulting from
efficient identification, while models such as E-Z Reader and
SWIFT directly specify the effects of linguistic variables on
eye movement behavior through functions whose form is
stipulated exogenously to the model. Modeling identification
from visual input should allow for the model to be used to
understand a range of effects that are known to influence
eye movements but which leading approaches cannot capture,
such as information density within words (Hyoni, Niemi, &
Underwood, 1989), word misidentification (Slattery, 2009;
Levy, Bicknell, Slattery, & Rayner, 2009), and visual neigh-
borhoods (Pollatsek, Perea, & Binder, 1999). The model also
goes beyond the only previous rational model of eye move-
ment control in reading, Mr. Chips (Legge, Hooven, Klitz,
Mansfield, & Tjan, 2002), in making predictions about not
only the location of fixations but also their duration, which
is important to gaining a full understanding of a range of ef-
fects on eye movements in reading, especially the effects of
linguistic variables.

In the following section, we describe our rational frame-
work for reading and the details of our model of eye move-
ment control in reading. We then focus the remainder of the
paper on using the model to understand the effects on eye
movements in reading of word frequency and predictability,
two of the most reliable linguistic effects in the eye movement
record. We first use the model qualitatively to provide expla-
nations for why the effects of these variables seen empirically
should result from efficient reading behavior, and then present
the quantitative results of two simulations demonstrating that
these effects are evident in the model’s behavior.

Reading as Bayesian inference

In the proposed framework, we model the goal of reading as
efficient text identification. While it is clear that this is not all
that readers do — inferring the underlying structural relation-
ships among words in a sentence and discourse relationships
between sentences that determine text meaning is a funda-
mental part of most reading — all reader goals necessarily in-



volve identification of at least part of the text, so we take text
identification to be a reasonable first approximation. There
are two sources of information relevant to this goal: visual in-
put and language knowledge, which the model combines via
Bayesian inference. Specifically, it begins with a prior dis-
tribution over possible identities of the text given by its lan-
guage model, and combines this with noisy visual input about
the text at the eyes’ position (giving the likelihood term) to
form a posterior distribution over the identity of the text tak-
ing into account both the language model and the visual input
obtained thus far. On the basis of the posterior distribution,
the model then decides whether or not to move its eyes (and
if so where to move them to) and the cycle repeats.

An implemented model in this framework must formalize
a number of pieces of the reading problem, including the pos-
sible actions available to the reader and their consequences,
the nature of visual input, the nature of language knowledge,
a means of combining visual input with prior expectations
about the form and structure of the text, and a behavior pol-
icy determining how the model will choose actions on the
basis of its posterior distribution over the identity of the text.
In the remainder of this section, we present the details of our
formalizations of these pieces.'

Formal problem of reading: Actions

We assume that on each of a series of discrete timesteps, the
model obtains visual input around the current location of the
eyes, and then chooses between three actions: (a) continuing
to fixate the currently fixated position, (b) initiating a sac-
cade to a new position, or (c) stopping reading. If the model
chooses option (a), time simply advances, and if it chooses
option (c), then reading immediately ends. If a saccade is ini-
tiated (b), there is a lag of two timesteps, representing time
required to plan a saccade, during which the model again ob-
tains visual input around the current position, and then the
eyes move toward the intended target. Because of motor error,
the actual landing position of the eyes is normally distributed
around the intended target with standard deviation given by
a linear function of the intended distance, with parameters
taken from Engbert et al. (2005).2

Noisy visual input

The visual input obtained by a reader on a given timestep
is generated from the following process, independently for
each character position. Each letter is represented as a 26-
dimensional vector, where a single element is 1 and the others
are zeros, and visual input about a letter is a sample from a 26-
dimensional Gaussian with a mean equal to the letter’s true
identity and a diagonal covariance matrix £ = A~'1, where
A is the reader’s visual acuity at that position. Higher visual

I'See Bicknell and Levy (2010b) for further computational de-
tails.

%In the terminology of the literature, the model has only ran-
dom motor error (variance), not systematic error (bias). Follow-
ing Engbert and Kriigel (2010), systematic error may arise from
Bayesian estimation of the best saccade distance.
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acuity, then, means a lower sample variance, yielding higher
quality visual input. We use the visual acuity function from
Engbert et al. (2005), in which A decreases exponentially
with retinal eccentricity and decreases asymmetrically, falling
off more slowly to the right than the left.> In order to scale the
quality of visual information, we multiply each acuity A by
the overall visual input quality A (values given in the simula-
tions below.) Visual input about non-alphabetic characters is
veridical knowledge of their identity. Visual input is limited to
the 19 character positions with the highest acuity (eccentric-
ities between -7 and 12), roughly corresponding to estimates
that readers of English obtain useful information from about
19 characters, and more from the right of fixation than the left
(Rayner, 1998). Note that in the model each letter is equally
confusable with all others, following Norris (2006, 2009), but
ignoring work on letter confusability (which could be added
to future model revisions; Engel, Dougherty, & Brian Jones,
1973; Geyer, 1977).

Language knowledge

In general, any generative model of linguistic knowledge that
assigns probabilities to text can be used as the prior distri-
bution on the identity of the text. For the simulations in this
paper, we use very simple probabilistic models of language
knowledge: word n-gram models (Jurafsky & Martin, 2009).
These models encode the probability of each word condi-
tional on the n — 1 previous words. While this is obviously
a crude representation of the rich knowledge of language that
human readers have, it serves here to illustrate the qualitative
effects of using linguistic context in reading.

Inference about text identity

Given both visual input and language knowledge, the model
makes inferences about the identity of the text w via standard
Bayesian inference, where the prior is given by the probabil-
ity of generating text identity w from the language model and
the likelihood is the probability of generating the visual input
7 from text with identity w under the visual input model:

p(W|Z) o< p(w)p(Z|w).

Behavior policy

The model uses a simple policy with two parameters, & and
B, to decide between actions based on the marginal probabil-
ity m of the most likely character ¢ in each position j,

m(j) = mcaxp(wj =c)

where w; indicates the character in the jth position. A high
value of m indicates relative confidence about the character’s
identity, and a low value relative uncertainty.

Given the values of this statistic m, the model decides be-
tween four possible actions, as illustrated in Figure 1. If the

3While we call refer to it here as visual acuity, it is clear from
the asymmetric nature of this function that it also has an attentional
component. For now, however, we make the simplifying assumption
that it is unchanging over time.



(a m=1[6,.7,.6,.4,3,.6]: Keep fixating (3)
(b) m=16,4,9,43,.6: Move back (to 2)
() m=16,.7,9,4,3,.6: Move forward (to 6)
d m=][6,7,9,8,.7,7: Stopreading

Figure 1: Values of m for a 6 character text under which a
model fixating position 3 would take each of its four actions,
ifa=.7and g = .5.

value of this statistic for the current position of the eyes is
less than the parameter @, the model chooses to continue fix-
ating the current position (1a). Otherwise, if the value of m(j)
is less than the parameter 3 for some leftward position, the
model initiates a saccade to the closest such position (1b). If
no such positions exist to the left, then the model initiates a
saccade to n characters past the closest position to the right
for which m(j) < o (1c).* Finally, if no such positions exist
to the right, the model stops reading (1d). Intuitively, then, the
model reads by making a rightward sweep to bring its confi-
dence in each character up to «, but pauses to move left to
reread any character whose confidence falls below f3.

Predictability and frequency in rational reading

The general findings about the effects of word predictability
and frequency on eye movements in reading can be summa-
rized relatively simply: words that are less predictable and
lower frequency tend to receive more and longer fixations
(Rayner, 1998, 2009). Here we describe intuitions for why
our model should qualitatively reproduce these effects.

Predictability

The basic intuition for why the model should produce effects
of word predictability is very closely related to the reason for
frequency effects in isolated word recognition reaction times
given by Norris (2006, 2009). In short, the lower the prior
probability of a word, the more visual input about it is needed
to become confident in its identity. A bit more formally, this
intuition is clearest if we make the simplifying assumption
that prior to obtaining any visual information about a word,
the model has near-veridical knowledge of the preceding con-
text. In that case, the probability of the true identity of the
word is given by the word’s predictability in context 7. Visual
input about the word will then (on average) increase the prob-
ability of the word’s true identity under the model’s beliefs.
Recall that under our behavior policy, the eyes will remain in
this position until the model’s confidence in the identity of the
character at that position exceeds the threshold ¢. Because in-
formation is being obtained about the entire word simultane-
ously, the probability of the identity of the fixated character is
closely tied to the identity of the entire word. Specifically, the
model’s confidence in the identity of the word gives a lower
bound on the model’s confidence in the identity of a charac-

4The role of n is to ensure that the model does not center its visual
field on the first uncertain character. For the present simulations, we
did not attempt to optimize this parameter, but fixed » at 3.
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ter within that word. Thus, the initial probability of the true
identity of the fixated character will start at or above the initial
probability 7 of the true word, and — when the word is iden-
tified correctly — the model’s confidence about the identity of
the fixated character is likely to reach the threshold o near
the same time that confidence about the identity of the fixated
word reaches the threshold. As a consequence, the amount of
visual input that is needed to reach the threshold which initi-
ates a saccade is largely a function of the distance between 7
and «a. For more predictable words, 7 is closer to ¢, so less
visual input will be needed on average to reach «, translating
into shorter and fewer fixations on the word.

Frequency

The most obvious intuition for the effect of frequency in the
model is parasitic on the effect of predictability: words that
are lower frequency are less predictable on average. Thus, as
with words of higher predictability, there should be on aver-
age shorter and fewer fixations on words of high frequency.

Simulation 1: full model

We now assess the effects of word predictability and fre-
quency that the model does in fact produce. We use the model
to simulate reading of a modified version of the Schilling cor-
pus (Schilling, Rayner, & Chumbley, 1998) of typical sen-
tences used in reading experiments. The arguments just de-
scribed predict qualitatively that the model will make more
and longer fixations on words of lower predictability and fre-
quency. In addition, we quantitatively compare the model’s
frequency effects to those of human readers of the Schilling
corpus, which have been reported by Pollatsek et al. (2006).

Methods

Model implementation We implemented our model with
weighted finite-state automata (WFSAs) using the OpenFST
library (Allauzen, Riley, Schalkwyk, Skut, & Mohri, 2007).
While inference in the wFSA is exact, for efficiency we
used Monte Carlo sampling from the wFSA to estimate the
model’s confidence m in each character position.

Model parameters and language model We set the overall
visual input quality A to 4. The model’s language knowledge
was an unsmoothed bigram model created using a vocabulary
set consisting of the 500 most frequent words in the British
National Corpus (BNC) as well as all the words in our test
corpus. From this vocabulary, we counted every bigram in
the BNC for which both words were in vocabulary. Due to
the intense computation required for exact inference, we then
trimmed this set by removing rare bigrams that occur less than
200 times (except that we do not trim any bigrams that occur
in our test corpus). This left a set of about 19,000 bigrams,
from which we constructed the bigram model.

Optimization of policy parameters We define reading ef-
ficiency E to be an interpolation of speed and accuracy

= =yL—T



where L is the log probability of the true identity of the text
under the model’s beliefs at the end of reading, T is the num-
ber of timesteps before the model stopped reading, and ¥
gives the relative value of speed. For the present simulations,
we use Y = .05, which produces reasonably accurate read-
ing. To find optimal values of the policy parameters o and 3
for this definition of efficiency, we use the PEGASUS method
(Ng & Jordan, 2000) to transform this stochastic optimization
problem into a deterministic one on which we can use stan-
dard optimization algorithms. We then use coordinate ascent
(in logit space) to find the optimal values of o and . This
procedure resulted in optimal values o = .88 and B = .98.5

Test corpus To ensure that results did not depend on
smoothing, we tested the model only on sentences from the
Schilling corpus in which every bigram occurred in the BNC.
Unfortunately, only 8 of the corpus sentences initially met
this criterion, so we made single-word changes to 25 more
(mostly proper names and rare nouns), producing a total of
33 sentences for which every bigram occurred in the BNC.

Analysis We used the model to perform 50 stochastic simu-
lations of the reading of our modified version of the Schilling
corpus. For each run, we calculated four standard eye move-
ment measures for each word in the corpus: first fixation du-
ration, gaze duration (defined to be the sum of all first pass
fixations), skipping probability (whether or not word was di-
rectly fixated), and refixation probability (the probability of
more than one first pass fixation). We then averaged each of
these four measures for each word token in the corpus, yield-
ing a single mean value for each measure for each word.

In order to compare the fixation duration measures to hu-
mans, we converted the model’s timesteps into milliseconds.
We performed this scaling by multiplying the duration of each
fixation by a conversion factor set to be equal to the mean hu-
man gaze duration divided by the mean model gaze duration
for the highest frequency bin. That is, we scaled the model
predictions to exactly match the human mean for gaze dura-
tions in the highest frequency bin.

Results

For each word in our modified version of the Schilling cor-
pus, we defined its predictability to be its probability under
the bigram language model, and we defined its frequency to
be its overall probability in the data from which the bigram
language model was constructed.

Predictability Figure 2 (red lines) shows the effect of pre-
dictability on the four aggregate measures. As predicted by
both the intuition given above, and in agreement empirical
human data, there are shorter fixations, more skipping, and

>It may at first seem puzzling that o < 8. However, this is a gen-
eral property of optimal behavior for the model. While saccades to
leave a character are initiated as soon as confidence m > «, because
of the saccade execution delay, m is usually substantially higher than
o when the eyes leave the character. Hence, it is a reasonable strat-
egy for the threshold for regressions 3 to be accordingly higher. See
also Bicknell and Levy (2010b) for further discussion.
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Figure 2: Effects of word predictability in both models on first
fixation durations, gaze durations, the rate of skipping, and
the rate of making a refixation, as estimated using Gaussian
kernel regression with standard deviation equal to 1/8th of
the range of log-predictability values. The 95% confidence
intervals are bootstrapped from 1000 dataset replicates.

fewer refixations for more predictable words.

Frequency Figure 3 (red lines) shows the effects of fre-
quency (binned by rounding down, to facilitate comparison
to Pollatsek et al., 2006) on the four aggregate measures. The
results across all four measures show a reasonable quantita-
tive fit to the human data (blue lines). Further, comparing the
overall size of the effect (i.e., the difference of the highest and
lowest frequency bins) of the model to the human data shows
a striking fit in effect direction and magnitude for all four
measures. One unpredicted result here, however, is that the
effect of frequency on the duration measures does not appear
completely monotonic.

Discussion

In summary, these results demonstrate that effects of pre-
dictability and frequency in the model’s behavior resemble
that of human readers in many respects. Predictability effects
on all four aggregate measures are monotonic and in the same
direction as predicted. Frequency effects on all four measures
are in the same direction as predicted, and the total magni-
tude of the effect is quite similar to that displayed by human
readers, despite the fact that we have not made any attempt to
fit the human data, excepting only the scaling parameter that
converts model timesteps to milliseconds. Overall quantita-
tive fits on all four measures showed reasonable agreement
to human data, but the fixation duration measures displayed
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Figure 3: Effects of word frequency in both models on first
fixation durations, gaze durations, the rate of skipping, and
the rate of making a refixation. The 95% confidence inter-
vals are bootstrapped from 10000 dataset replicates. Mean
values from human readers of the Schilling corpus reported
by Pollatsek et al. (2006) are shown for comparison.

some non-monotonicity.

It is perhaps unsurprising that predictability seems to have
the most consistent effect, given the large role that pre-
dictability plays in the model, and the relatively straightfor-
ward predictions made previously. More surprising are the
apparent non-monotonicities in the predictions for how the
fixation duration measures should vary with respect to word
frequency. One possibility is that these arise from our arti-
ficial removal of many low-frequency words from the lan-
guage model, which may have meant that some of the low-
frequency words in the Schilling corpus had artificially few
visual neighbors, yielding an anti-frequency effect. The next
simulation investigates this hypothesis.

Simulation 2: Model without context

The main goal of Simulation 2 is to explore the possibility
that removing low frequency words from the model’s vocabu-
lary (which was necessary for computational efficiency) con-
tributed to the non-monotonicities we observed in the effects
of word frequency on fixation durations. Our strategy is to
simplify the language model, which makes the computations
faster to carry out, allowing for the use of a larger vocabu-
lary. Specifically, we replace the previous bigram language
model, which made use of linguistic context, with a unigram
language model that includes only word frequency informa-
tion and cannot make use of linguistic context. This simplified
language knowledge also allows us to test how the model’s
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predictions change when it can no longer make use of lin-
guistic context to help recognize words.

Methods

Except the following, the methods were identical to those of
Simulation 1. We replaced the bigram language model with
a unigram language model. Training was performed in the
same manner, except that instead of including only the most
common 500 words in the BNC, we included all words that
occur at least 200 times (corresponding to a frequency of 2
per million; about 19,000 words). Finally, we increased the
overall visual input quality A from 4 to 10. Because the new
language model gives poorer information about the text, more
visual input is needed to reach similar levels of confidence
in word identities. Increasing the overall input quality to 10
results in the new model taking a similar number of timesteps
to read a sentence as the previous model.

Results and discussion

Predictability Figure 2 (green lines) shows the effect of
predictability on the four aggregate measures for the model
without context. Because the model does not make use of
linguistic context in identifying words, any apparent effects
of predictability must reflect effects of other variables corre-
lated with predictability (e.g., frequency and length). We can
then use these results as a baseline to determine the amount of
the full model’s apparent predictability effect that was in fact
driven by predictability. The results across all four measures
show that predictability effects are smaller for this model
without context, indicating that the full model’s use of con-
text was important in producing its predictability effects.

Frequency Figure 3 (green lines) shows the effect of fre-
quency on the four aggregate measures. Across all four mea-
sures, the size of the frequency effect in this model also shows
areasonable quantitative fit to human data, although the refix-
ation rates and first fixation durations are about twice as far
from human data as the full model. As with the full model,
however, the direction and magnitude of all frequency effects
is a close match to human data. The higher refixation rate
and lower word skipping rate of this model relative to the full
model likely reflect the model’s poorer language knowledge
(cf. Bicknell & Levy, 2010a). Finally, and most importantly,
we see that the problem of non-monotonicity is substantially
reduced for first fixation durations and completely eliminated
for gaze durations, supporting our argument that trimming the
vocabulary may have been responsible for some of the non-
monotonicity in the previous simulation results.

General discussion

In this paper, we presented the first rational model of eye
movement control in reading to make predictions for the en-
tirety of the reading record. We gave intuitions for why it
should produce effects of word predictability and frequency
qualitatively similar to those produced by human readers, and
presented two simulations empirically testing the effects of



these variables on model behavior. Simulation 1, using a full
version of the model with parameters selected to maximize
the agent’s reading efficiency, demonstrated that the model
yields effects of frequency and predictability that are qual-
itatively — and in frequency’s case, quantitatively — similar
to those of human readers, though the predictions for fixa-
tion durations on words of intermediate frequency did not ap-
pear completely monotonic. We hypothesized that these non-
monotonicities may have been a result of the full model’s
small vocabulary, which had to be artificially limited for tech-
nical reasons. Simulation 2 tested this hypothesis using a
model with simpler language knowledge but a larger vocab-
ulary, and provided some evidence that alleviating this limi-
tation helps to make the frequency effects more monotonic.
In addition, by demonstrating that a model that cannot make
use of predictability information shows smaller apparent pre-
dictability effects, Simulation 2 demonstrated that the pre-
dictability effects obtained for the full model were not likely
to have been merely an artifact of the correlation between
word predictability and other variables such as word length.

Taken together, these results demonstrate that the rational
reading framework can produce reasonable effects of word
predictability and frequency on four aggregate measures of
eye movement behavior: first fixation durations, gaze dura-
tions, skip rates, and refixation rates. While the quantitative
fit to human data is not perfect, the fact that it is such a good
match is striking given that we fit no free parameters to hu-
man data, except the conversion of timesteps to milliseconds
— a parameter that all timestep-based models must include.
(In future work, determining the model’s best possible fit to
human data will require tuning the only two other truly free
parameters of our model — the agent’s value of speed relative
to accuracy Y and the overall visual input quality A.) Instead
of being selected to maximize the model’s fit to human data,
the policy parameters o and 8 of our model were set to val-
ues that optimized the efficiency with which the model identi-
fied the text, given the agent’s particular goal function. Future
work must be done to explore the predictions of our model
for a wider range of eye movement phenomena observed in
reading, extending our analyses of the model’s behavior both
with more dependent measures, such as character landing po-
sitions within words and regressive saccades, and with more
independent variables, such as word length.
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