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Abstract
Probability-matching is a well-documented suboptimal behav-
ior that arises in simple prediction tasks. We identify two dis-
tinct, local choice strategies that both give rise to probability-
matching behavior on a global level. Using a dual-task
paradigm, we evaluate the hypothesis that these qualitatively
different strategies exhibit different demands on individuals’
central executive resources. We find that participants placed
under a concurrent working memory are driven away from
the one-trial-back strategy—utilized by participants without a
working memory load—and towards a strategy that integrates
a longer window of past outcomes into the current prediction.
In other words, the demands of the concurrent task appeared to
shift the prediction strategies used by decision-makers in our
study.
Keywords: Decision-making; Prediction; Win-Stay-Lose-
Shift; Working Memory; Dual Task; Heuristics

Introduction
One decision-making anomaly of great interest is the ten-
dency for humans to match their responses to outcome prob-
abilities in the prediction of binary outcomes. For example
consider a laboratory task in which people need to repeatedly
predict which of two outcomes (say Event A and Event B)
will occur next. If Event A occurs at a base rate of p = .65,
Event B occurs at a base rate of p = .35 and each outcome
is conditionally independent of the last outcome, the optimal
prediction strategy would be to always predict that Event A
will occur next, which is called maximizing. However, a large
body of empirical work suggests that people appear to predict
events in proportion to their frequency of occurrence, known
as probability matching (Estes, 1961; Vulkan, 2000). Under
probability matching, a person would predict Event A 65% of
the time and Event B 35% of the time. It is easy to see that
this strategy produces an expected overall accuracy of 54.5%
(calculated as .65 x .65 + .35 x .35), which is inferior to that
produced by maximizing—which produces an expected over-
all prediction accuracy of 65%. In the present study, we ex-
amine strategies that be may underlying probability matching
in random sequences of events.

The psychological mechanisms that give rise to probabil-
ity matching behavior are unclear and are a matter of ongo-
ing debate. One hypothesis posits that probability match-
ing arises from the use of a suboptimal cognitive shortcut
in which individuals allocates their responses according to
an assessment of the observed outcome probabilities (e.g.,
Koehler & James, 2009). Under this strategy, termed expec-
tation matching (EM), the decision-maker’s responses are the

result of integrating a moving window of past outcome infor-
mation (Sugrue, Corrado, & Newsome, 2004). To generate
a response, the individual stochastically and independently
generates predictions in accordance with this historical as-
sessment of outcome probabilities. Assuming a sufficiently
long historical window, a decision-maker utilizing the EM
strategy in the example above would stochastically allocate
65% of their predictions to Event A and 35% of their predic-
tions to Event B.

Another proposal suggests that probability matching be-
havior seen at a more global level is the byproduct of a lo-
cal decision process called win-stay lose-shift (WSLS: Her-
rnstein, Rachlin, & Laibson, 2000). Under WSLS, an indi-
vidual persists with predicting one event, say Event A, until
they make an incorrect prediction, at which point they shift
responses and persist with predicting Event B until they are
incorrect. While under certain task circumstances WSLS is
an optimal choice strategy (Shimp, 1976), it is a subopti-
mal prediction strategy in the task outlined above. It can be
shown that WSLS produces overall response rates (and hence,
accuracy rates) equivalent to probability matching (Unturbe
& Corominas, 2007). Further, there is evidence that people
utilize WSLS in the simple binary prediction task described
above (Gaissmaier & Schooler, 2008). Unlike the EM strat-
egy, which involves integrating a comparatively long histor-
ical window of outcomes, WSLS requires that the decision-
maker maintain a short-term memory for only the most recent
response and outcome.

In the present study, we examined the cognitive demands
imposed by the WSLS and EM strategies, with the idea that
decision makers may utilize both strategies, but under dif-
ferent circumstances. While both strategies result in equiva-
lent behavior at a global level—probability matching—they
make different behavioral predictions at a local, trial-by-trial
level. It is well documented that the working memory de-
mands of a secondary task deplete mental resources that could
otherwise be used to accomplish a primary task (Pashler,
1994). For example, Zeithamova and Maddox (2006) found
that working memory load disrupts learning of explicit, rule-
based categories and drives participants towards the use of
an implicit, information-integration strategy. Here, we place
decision-makers under a concurrent working memory load
and find that they exhibit the same global tendency to proba-
bility match as decision-makers without a working memory
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load. Using simple models, we demonstrate that different
local strategies result in global probability matching. The
distinction between these two matching strategies is theoret-
ically significant because recent contributions to the proba-
bility matching literature (e.g., Gaissmaier & Schooler, 2008;
Koehler & James, 2009) fail to find common ground on a)
which strategies may give rise to probability matching be-
havior, and b) to what extent these strategies place demands
on executive function.

Method
Participants One-hundred and sixty undergraduates at the
University of Texas at Austin participated in this study, ran-
domly assigned to one of two conditions: Dual-Task (DT) and
Single-Task (ST). Participants were paid a small cash bonus
of one cent per correct prediction.

Design and Procedure The experiment stimuli and instruc-
tions were displayed on 17-inch monitors. The participants
were told that their goal was to predict repeatedly whether
a red square would appear above a fixation cross or a green
square below the fixation cross, using the up and down ar-
rows respectively (see Figure 1 for a task screenshot). Like
other studies (e.g., Koehler & James, 2009), the sequence of
events was serially independent. The probability of the more
common event was p = .65. The assignment of the high-
probability event to the outcomes was counterbalanced across
subjects. Subjects completed 10 practice trials in order to fa-
miliarize themselves with the response procedure, followed
by 320 trials divided into 8 blocks of 40 trials each.

Figure 1: Example task screenshot of response and outcome
for a correct prediction.

In order to accommodate the dual-task manipulation, the
prediction task used a deadline procedure to ensure that a
fixed amount of time elapsed each trial. At the start of each
trial, the subject saw the word “PREDICT” and had two sec-
onds to make a response. This response window lasted two
seconds regardless of the timing of the response, and was fol-
lowed by the actual outcome along with feedback indicating
whether their prediction was correct (“CORRECT”) or incor-
rect (“INCORRECT”). The outcome and feedback were dis-
played for one second, and was followed by a one second
inter-trial interval. If a subject failed to respond within the
response window, the message “TOO SLOW” was displayed

along with the outcome. The timing of response windows and
outcomes was the same for both the ST and DT conditions.

Blocks in the DT condition consisted of a secondary tone-
counting task in addition to the prediction task. The design of
the secondary task follows that of Foerde et al. (2007). Two
types of tones, high-pitched (1000 Hz) and low-pitched (500
Hz) were played during each trial in the DT condition. Each
three-second trial was divided into 12 intervals of 250 ms,
with the tones occurring in intervals 3-10 (500-2,500 ms after
trial onset). The number of tones presented each trial varied
uniformly between 1 and 3 and occurred randomly within in-
tervals 3-10. The pitch of each tone varied randomly, with the
base rate of high tones varying uniformly from .3 to .7 each
block. The subjects were instructed to maintain a running
count of the number of high tones while ignoring the low-
pitched tones. Note that the secondary task persisted during
both the response window and the outcome. At the end of
each 40-trial block, the subjects reported their running count
using the keyboard and were instructed to restart their count
at zero.

After subjects had completed 320 trials, they completed a
questionnaire in which they were asked to provide estimates
of the overall frequency of the red and green events. They
were also given five prediction strategies to evaluate. These
strategies included an expectation matching strategy (“Pre-
dict GREEN 65% of the time regardless of what happened
during the last outcome”), a maximizing strategy, (“Always
predict GREEN, regardless of what happened during the last
outcome”), and a WSLS strategy (“Stick with predicting one
outcome, and then change your prediction if you were incor-
rect on the last trial”). Subjects were instructed to rank these
five strategies from 1 (“the best possible strategy”) to 5 (“the
worst possible strategy”), using each ranking only once.

Results
We removed data from 12 ST and 26 DT participants whose
prediction behavior differed non-significantly from equiprob-
able responding (Binomial test at the p= .05 level of signifi-
cance). We also removed the data of eleven participants who
failed to respond before deadline more than 20 times during
the experiment. One hundred and eleven participants (48 DT
and 63 ST participants) remained in the analysis that follows.

Overall Prediction Performance Figure 2 depicts the sub-
jects’ accuracy, by condition, in predicting outcomes over
the 320 trials. The dashed line depicts the level of accu-
racy expected under probability matching probability—that
is, if participants allocated their 65% of their responses to the
more frequent outcome. A 2 (task condition) x 2 (trial block)
ANOVA revealed neither a significant main effect of task con-
dition, F(1,107) = .55, p = .46, nor a significant interaction
between condition and trial block, F(1,107) = 0.27, p = .61.
There was a significant main effect of trial block, F(1,107)
= 25.51, p < .001. Again, the lack of effect of task condi-
tion suggests that the dual task manipulation did not hinder
subjects’ overall accuracy, but rather, may have shifted the
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Figure 2: Left panel: mean prediction accuracy, by task con-
dition and trial block. ST = Single-task condition, DT=dual-
task condition. Error bars represent standard error of the
mean.

prediction strategies that subjects employed.

Overall Deviation from Matching Recall that our main
goal was to determine whether matching behavior results
from different strategies across the ST and DT conditions.
Before comparing strategy usage, we first determine that
both groups were in fact predominantly matching—and to
the same degree. Specifically, we determined whether the
secondary task manipulation affected the degree to which
subjects deviated significantly from matching behavior (that
is, allocating 65% of one’s responses to the more frequent
event). For each of the 8 blocks, we calculated the propor-
tion of subjects whose response allocations deviated signifi-
cantly from a response allocation that matched the observed
outcome frequency. The proportion of subjects in each con-
dition, by block, that deviated significantly from probability
matching behavior (under a Binomial test at the p = .05 level
significance) are shown in Figure 3. We conducted a logistic
regression with each subject’s classification (deviating signif-
icantly or not) as the criterion and task condition and trial
block as predictors, observing no significant coefficients for
task condition (Beta = -.83, p = .44) or the interaction be-
tween task condition and trial block (Beta = .08, p = .53).
Trial block did have a significant coefficient (Beta = .5, p<
.001). The apparent null effect of task condition suggests that
ST and DT subjects were engaging in prediction behavior that
appears similar at a coarse level of analysis.

Exponentially-Weighted Averaging Model Analysis At
least two distinct response strategies can manifest themselves
as probability matching. Under WSLS, the decision-maker
repeats the previous trial’s response after a correct predic-
tion and switches their response after an incorrect prediction.
Thus responses under WSLS are determined by the outcome
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Figure 3: Proportion of Subjects Deviating Significantly from
Matching (by Binomial test), by task condition and trial
block. ST = Single-task condition, DT=dual-task condition.
Error bars represent standard error of proportion.

on the only the most recent trial. In contrast, EM requires that
the decision-maker integrate a much longer window of pre-
vious outcomes, which in turn informs the decision-maker’s
response probabilities. By fitting a simple exponentially-
weighted averaging model model to participants’ responses,
we identified the degree to which participants’ predictions
were dependent on recent outcomes. The probability P(t) of
the decision-maker predicting the green event at time t is de-
termined by:

P(t) = recency*outcome(t-1) + (1-recency)*P(t-1),

where outcome(t-1) is the outcome on the previous trial, P(t-
1) is the model’s estimate of the rate at which the green out-
come occurs, and recency is a parameter that determines how
much recent outcomes are weighted in updating P(t). When
the recency parameter is large, P(t) is based only on the most
recent trial’s outcome, and when the recency parameter is
small, the model’s predicated response on the next trial P(t)
is based on a long window of previous outcomes. We fit this
model to each participants’ responses using maximum likeli-
hood estimation, assuming separate parameter values across
blocks. As shown in Figure 4, ST participants had larger esti-
mated learning weights than DT participants, indicating that
prediction strategies employed by ST participants were in-
fluenced more by recent outcomes. A 2 (task condition)x2
(trial block) ANOVA revealed a significant main effect of
task condition, F(1,107) = 4.13, p<.05, a significant main
effect of block, F(1,107) = 21.38, p<0.001, and a signifi-
cant interaction between condition and trial block, F(1,107)
= 6.34, p<.05. The effect of condition suggests that ST par-
ticipants exhibited choice behavior characteristic of WSLS—
dependence on only the most recent trials—while DT par-
ticipants used a strategy characteristic of the EM strategy—
involving integration of a long window of past outcomes.
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Figure 4: Average best-fitting recency parameter values for
exponentially-weighted averaging model, by task condition
and block. ST = Single-task condition, DT=dual-task condi-
tion. Error bars represent standard error of the mean.

Models of the Two Prediction Strategies To more directly
address usage of these strategies, we compared the relative
goodness-of-fit of two models that instantiated the WSLS and
EM strategies. To examine participants’ WSLS usage, we fit
a simple WSLS model to participants’ choices, hypothesizing
that ST participants would be better fit by this model than DT
participants. This one-parameter model constrains the prob-
ability of a switching responses after an incorrect prediction
(or a “loss”) to the probability of persisting with the same re-
sponse after a correct response (or a “win”). This model fol-
lows the WSLS implementation described by Steyvers, Lee,
and Wagenmakers (2009). To examine usage of the EM strat-
egy, we fit a simple stochastic response model, which we call
the fixed response probability (FR) model, to participants’
data. Under this model, a single parameter determines the
base rate of predicting the green event. This model—which
we use a proxy measure for EM strategy use—assumes that
responses are determined stochastically and independently.
One crucial difference between these two models is the de-
pendence of the response on trial t to the outcome on trial t-1.
We fit both models to each participants’ choice data using
maximum likelihood estimation allowing parameter values to
vary across blocks.

We predicted that ST subjects would be better described
by the WSLS model and that DT subjects would be better
described by the FR model. Figure 5 depicts the relative
goodness-of-fit (expressed as a log-likelihood ratio) between
the two models, for each condition across the 8 blocks. In-
deed, the likelihood ratios reveal that ST participants were
better described by the WSLS model than the responses of
DT participants, and conversely, DT participants were better
described by the FR model—our proxy for the EM strategy.
A 2 (task condition) x 2 (trial block) ANOVA revealed a sig-
nificant main effect of task condition, F(1,107) = 5.28, p<.05,
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Figure 5: Comparison of model goodness-of-fit between
WSLS and EM models. Average likelihood ratios using best-
fitting parameter values for each block of each subject. Error
bars represent standard error of the mean. ST = Single-task
condition, DT=dual-task condition. Error bars represent stan-
dard error of the mean.

a main effect of trial block, F(1,107) = 19.18, p<.001, and no
significant interaction between task condition and trial block,
F(1,107) = 1.14, p=.29. The main effect of task condition
suggests that the concurrent working memory load influenced
the local prediction strategies utilized by decision-makers.

Offline Reported Event Probabilities We hypothesized
that the secondary task would impair DT participants’ ability
to explicitly encode information about outcome frequencies.
To test this, we calculated absolute deviations between partic-
ipants’ offline reported outcome probabilities and true empir-
ical base rates. The average absolute deviations are shown in
Figure 6. We found that DT participants’ reported outcome
probabilities deviated significantly more from observed base
rates than DT participants, t(107) = 2.82, p<.01. Taken in
conjunction with the similar overall accuracy profiles of the
two groups, this result suggests that the two groups may have
been using qualitatively different strategies to make predic-
tions.

Strategy Self-Reports We assessed participants’ offline
endorsement of the strategies that were described in the ques-
tionnaire. To do this, we compared participants’ relative pref-
erence for the WSLS over EM by their subtracting their rank-
ing of the WSLS strategy from their ranking of the EM strat-
egy, yielding a measure of endorsement of WSLS (note that
this measure is equally informative about preference for EM).
We found that ST participants’ endorsement of WSLS signif-
icantly correlated with their overall WSLS model goodness-
of-fit, r(107) = .35, p < .01, suggesting that ST participants
had some explicit awareness of the strategies they employed.
In contrast, DT participants’ strategy endorsements did not
significantly correlate with their average goodness-of-fit mea-
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Figure 6: Mean absolute deviation from observed (empirical)
base rate, by task condition. Error bars represent standard
error of the mean.

sures for either model, suggesting the concurrent working
memory load impaired decision-makers’ ability to explicitly
report the strategies they employed [WSLS model: r(107) =
.15, p=.28, FR model: r(107) = -.02, p = .82].

Discussion
In this experiment, we investigated the effect of a concur-
rent working memory task on probability-matching behavior
in a random, sequentially independent prediction task. To
do so, we imposed a secondary working memory task on
subjects, which was believed to deplete working memory re-
sources that could have been used on the primary prediction
task (Pashler, 1994). In the DT condition, subjects needed to
both make responses in the prediction task and update their
count of auditory tones, while in the ST condition, subjects
needed only to make predictions. Although most subjects in
both conditions demonstrated probability matching, subjects
in the ST condition relied more on a WSLS strategy, which re-
quires memory for the previous prediction and outcome. This
finding suggests that while both ST and DT subjects appear
to be using suboptimal strategies with similar base rates at a
molar level, the two groups may actually be using different
prediction strategies.

Our results are interesting in the context of previous dual-
task studies of human learning. For example, Foerde et al.,
(2007) found that a concurrent working memory load during
probabilistic classification learning impaired subjects’ acqui-
sition of explicit associations between perceptual cues and
outcomes, although these subjects evidenced implicit learn-
ing of cue-outcome contingencies. Further, they were unable
to flexibly apply knowledge about cues in an offline evalua-
tion. Zeithamova and Maddox (2006) found that a concur-
rent working memory load disrupts learning of explicit, rule-
based categories and instead drives subjects towards the use
of an implicit, information integration strategy. Both of these
studies point to the possibility that concurrent working mem-
ory load engenders the use of implicit learning systems. In
our study, utilization of the EM strategy may be indicative of
the operation of an implicit system.

Another possibility raised in the literature is that probabil-

ity matching arises out of peoples’ search for regularities in
the event sequences (Gaissmaier & Schooler, 2008). Even
when laboratory prediction tasks are probabilistic and out-
comes sequences are conditionally independent, people may
search for deterministic patterns in an attempt to achieve pre-
diction accuracy above that of maximizing. Thus, if an indi-
vidual believes that the event sequence contains structure, he
or she will try to improve their accuracy by searching for pat-
terns. Gaissmaier & Schooler’s result suggests that that some
individuals in the present study who appear to be probability
matching—rather than maximizing—are more adept at de-
tecting deterministic patterns when they are later introduced
into the sequence of events.

One possibility in the present study is that subjects in the
ST condition may have begun a search for deterministic pat-
terns and abandoned the search given the very low likelihood
of a pattern repeating itself in the random sequence, reverting
later to a suboptimal WSLS strategy. Supporting evidence
comes from the fact that over 60% of the ST condition’s re-
sponses are consistent with WSLS and that this percentage
increases over time. This hypothesis will be the subject of
investigation in future studies.
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